A Review on Methods for Detecting SNP Interactions in High-Dimensional Genomic Data

In this era of genome-wide association studies (GWAS), the quest for understanding the genetic architecture of complex diseases is rapidly increasing more than ever before. The development of high throughput genotyping and next generation sequencing technologies enables genetic epidemiological analysis of large scale data. These advances have led to the identification of a number of single nucleotide polymorphisms (SNPs) responsible for disease susceptibility. The interactions between SNPs associated with complex diseases are increasingly being explored in the current literature. These interaction studies are mathematically challenging and computationally complex. These challenges have been addressed by a number of data mining and machine learning approaches. This paper reviews the current methods and the related software packages to detect the SNP interactions that contribute to diseases. The issues that need to be considered when developing these models are addressed in this review. The paper also reviews the achievements in data simulation to evaluate the performance of these models. Further, it discusses the future of SNP interaction analysis.

[1]  Jason H. Moore,et al.  Multifactor dimensionality reduction for graphics processing units enables genome-wide testing of epistasis in sporadic ALS , 2010, Bioinform..

[2]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[3]  Gary D. Bader,et al.  Pathguide: a Pathway Resource List , 2005, Nucleic Acids Res..

[4]  K. Lange,et al.  Prioritizing GWAS results: A review of statistical methods and recommendations for their application. , 2010, American journal of human genetics.

[5]  R. Elston,et al.  The Meaning of Interaction , 2010, Human Heredity.

[6]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[7]  D. Blacker,et al.  Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database , 2007, Nature Genetics.

[8]  Junying Zhang,et al.  EpiSIM: simulation of multiple epistasis, linkage disequilibrium patterns and haplotype blocks for genome-wide interaction analysis , 2013, Genes & Genomics.

[9]  Xi Chen,et al.  Pathway hunting by random survival forests , 2013, Bioinform..

[10]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[11]  Q. Zou,et al.  An overview of SNP interactions in genome-wide association studies. , 2015, Briefings in functional genomics.

[12]  Jason H. Moore,et al.  The Ubiquitous Nature of Epistasis in Determining Susceptibility to Common Human Diseases , 2003, Human Heredity.

[13]  Jiang Gui,et al.  A Robust Multifactor Dimensionality Reduction Method for Detecting Gene–Gene Interactions with Application to the Genetic Analysis of Bladder Cancer Susceptibility , 2011, Annals of human genetics.

[14]  Ao Li,et al.  A genome-wide association study of Alzheimer’s disease using random forests and enrichment analysis , 2012, Science China Life Sciences.

[15]  Jérôme Goudet,et al.  quantiNemo: an individual-based program to simulate quantitative traits with explicit genetic architecture in a dynamic metapopulation , 2008, Bioinform..

[16]  Qiang Yang,et al.  BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies , 2010, American journal of human genetics.

[17]  Divyakant Agrawal,et al.  eCEO: an efficient Cloud Epistasis cOmputing model in genome-wide association study , 2011, Bioinform..

[18]  Hong-Bin Shen,et al.  MACOED: a multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies , 2015, Bioinform..

[19]  Ed Keedwell,et al.  Ant colony optimisation of decision trees for the detection of gene-gene interactions , 2014, 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[20]  Scott M. Williams,et al.  Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[21]  Xiang Zhang,et al.  COE: A General Approach for Efficient Genome-Wide Two-Locus Epistasis Test in Disease Association Study , 2010, J. Comput. Biol..

[22]  Oscar E. Gaggiotti,et al.  Computer simulations: tools for population and evolutionary genetics , 2012, Nature Reviews Genetics.

[23]  Bertil Schmidt,et al.  GPU-accelerated exhaustive search for third-order epistatic interactions in case-control studies , 2015, J. Comput. Sci..

[24]  Kristel Van Steen,et al.  MB-MDR: Model-Based Multifactor Dimensionality Reduction for detecting interactions in high-dimensional genomic data , 2008 .

[25]  E. Birney,et al.  Reactome: a knowledgebase of biological pathways , 2004, Nucleic Acids Research.

[26]  Brendan O'Fallon TreesimJ: a flexible, forward time population genetic simulator , 2010, Bioinform..

[27]  Alison A. Motsinger-Reif,et al.  The power of quantitative grammatical evolution neural networks to detect gene-gene interactions , 2011, GECCO '11.

[28]  Torsten Gunther,et al.  phenosim - A software to simulate phenotypes for testing in genome-wide association studies , 2011, BMC Bioinformatics.

[29]  D. Thomas,et al.  Gene–environment-wide association studies: emerging approaches , 2010, Nature Reviews Genetics.

[30]  Marylyn D. Ritchie,et al.  Generating Linkage Disequilibrium Patterns in Data Simulations Using genomeSIMLA , 2008, EvoBIO.

[31]  Kelly R. Robbins,et al.  Ant colony algorithm for analysis of gene interaction in high-dimensional association data , 2009 .

[32]  P. Matthews,et al.  Pathway and network-based analysis of genome-wide association studies in multiple sclerosis , 2009, Human molecular genetics.

[33]  Gregory Ewing,et al.  MSMS: a coalescent simulation program including recombination, demographic structure and selection at a single locus , 2010, Bioinform..

[34]  Kaizhi Tang,et al.  An agent-based framework for collaborative data mining optimization , 2010, 2010 International Symposium on Collaborative Technologies and Systems.

[35]  J. Ott,et al.  Complement Factor H Polymorphism in Age-Related Macular Degeneration , 2005, Science.

[36]  Blaz Zupan,et al.  Heterogeneous computing architecture for fast detection of SNP-SNP interactions , 2014, BMC Bioinformatics.

[37]  M. Ritchie Using Biological Knowledge to Uncover the Mystery in the Search for Epistasis in Genome‐Wide Association Studies , 2011, Annals of human genetics.

[38]  Laurent Excoffier,et al.  Fastsimcoal: a Continuous-time Coalescent Simulator of Genomic Diversity under Arbitrarily Complex Evolutionary Scenarios , 2011, Bioinform..

[39]  K. Lunetta,et al.  Identifying SNPs predictive of phenotype using random forests , 2005, Genetic epidemiology.

[40]  J. Kingman Origins of the coalescent. 1974-1982. , 2000, Genetics.

[41]  Bo Peng,et al.  Forward-time simulation of realistic samples for genome-wide association studies , 2010, BMC Bioinformatics.

[42]  Muin J. Khoury,et al.  Gene Prospector: An evidence gateway for evaluating potential susceptibility genes and interacting risk factors for human diseases , 2008, BMC Bioinformatics.

[43]  Ioannis Xenarios,et al.  FastEpistasis: a high performance computing solution for quantitative trait epistasis , 2010, Bioinform..

[44]  Ed Keedwell,et al.  Subset-based ant colony optimisation for the discovery of gene-gene interactions in genome wide association studies , 2013, GECCO '13.

[45]  Lin He,et al.  SHEsisEpi, a GPU-enhanced genome-wide SNP-SNP interaction scanning algorithm, efficiently reveals the risk genetic epistasis in bipolar disorder , 2010, Cell Research.

[46]  Manuel Mattheisen,et al.  Integrated Genome-Wide Pathway Association Analysis with INTERSNP , 2012, Human Heredity.

[47]  Ting Hu,et al.  Network Modeling of Statistical Epistasis , 2013 .

[48]  Antonino Staiano,et al.  Investigation of Single Nucleotide Polymorphisms Associated to Familial Combined Hyperlipidemia with Random Forests , 2012, WIRN.

[49]  Yanjun Qi Random Forest for Bioinformatics , 2012 .

[50]  Dragomir R. Radev,et al.  Identifying gene-disease associations using centrality on a literature mined gene-interaction network , 2008, ISMB.

[51]  Xiang Zhang,et al.  Fastanova: an efficient algorithm for genome-wide association study , 2008, KDD.

[52]  Bertil Schmidt,et al.  High-speed exhaustive 3-locus interaction epistasis analysis on FPGAs , 2015, J. Comput. Sci..

[53]  Jason H. Moore,et al.  Exploiting the proteome to improve the genome-wide genetic analysis of epistasis in common human diseases , 2008, Human Genetics.

[54]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[55]  M. Campbell,et al.  PANTHER: a library of protein families and subfamilies indexed by function. , 2003, Genome research.

[56]  I. Guella,et al.  SNCA and MAPT genes: Independent and joint effects in Parkinson disease in the Italian population , 2012, Parkinsonism & related disorders.

[57]  Jacques Rougemont,et al.  Nemo: an evolutionary and population genetics programming framework , 2006, Bioinform..

[58]  Ren-Hua Chung,et al.  PUPPI: A pathway analysis method using protein-protein interaction network for case-control data , 2013, 2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).

[59]  Scott M. Williams,et al.  A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction , 2007, Genetic epidemiology.

[60]  Shyh-Huei Chen,et al.  A support vector machine approach for detecting gene‐gene interaction , 2008, Genetic epidemiology.

[61]  Elizabeth A. Heron,et al.  The SNP ratio test: pathway analysis of genome-wide association datasets , 2009, Bioinform..

[62]  Jason H. Moore,et al.  Optimal Use of Expert Knowledge in Ant Colony Optimization for the Analysis of Epistasis in Human Disease , 2009, EvoBIO.

[63]  Y. Lee,et al.  Pathway analysis of a genome-wide association study in schizophrenia. , 2013, Gene.

[64]  Jörg Fliege,et al.  Machine learning approaches for the discovery of gene-gene interactions in disease data , 2013, Briefings Bioinform..

[65]  Jong Y. Park,et al.  TRM: A Powerful Two‐Stage Machine Learning Approach for Identifying SNP‐SNP Interactions , 2012, Annals of human genetics.

[66]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[67]  Yuanyuan Shen,et al.  Support Vector Machines with L1 penalty for detecting gene-gene interactions , 2012, Int. J. Data Min. Bioinform..

[68]  Pierre Geurts,et al.  A screening methodology based on Random Forests to improve the detection of gene–gene interactions , 2010, European Journal of Human Genetics.

[69]  Andreas Ziegler,et al.  On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data , 2010, Bioinform..

[70]  Chun Li,et al.  GWAsimulator: a rapid whole-genome simulation program , 2007, Bioinform..

[71]  Jason H. Moore,et al.  Chapter 11: Genome-Wide Association Studies , 2012, PLoS Comput. Biol..

[72]  Michael Boehnke,et al.  Evaluation of genome-wide association study results through development of ontology fingerprints , 2009, Bioinform..

[73]  Jason H. Moore,et al.  Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions , 2003, Bioinform..

[74]  Don Gilbert,et al.  Biomolecular Interaction Network Database , 2005, Briefings Bioinform..

[75]  Cheng Soon Ong,et al.  GWIS - model-free, fast and exhaustive search for epistatic interactions in case-control GWAS , 2013, BMC Genomics.

[76]  P. Kuo,et al.  Pathway Analysis Using Information from Allele-Specific Gene Methylation in Genome-Wide Association Studies for Bipolar Disorder , 2013, PloS one.

[77]  Peter Donnelly,et al.  HAPGEN2: simulation of multiple disease SNPs , 2011, Bioinform..

[78]  H. Boezen,et al.  Genome-wide association studies: what do they teach us about asthma and chronic obstructive pulmonary disease? , 2009, Proceedings of the American Thoracic Society.

[79]  M. L. Calle,et al.  Model‐Based Multifactor Dimensionality Reduction for detecting epistasis in case–control data in the presence of noise , 2011, Annals of human genetics.

[80]  Jason H. Moore,et al.  Power of multifactor dimensionality reduction for detecting gene‐gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity , 2003, Genetic epidemiology.

[81]  Park,et al.  Open Access Research Article Identification of Type 2 Diabetes-associated Combination of Snps Using Support Vector Machine , 2022 .

[82]  Yi Pan,et al.  Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering , 2014, BMC Bioinformatics.

[83]  Yue Wang,et al.  An Overview of Population Genetic Data Simulation , 2012, J. Comput. Biol..

[84]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[85]  Athos Antoniades,et al.  Discovering disease associated gene-gene interactions: A two SNP interaction analysis framework , 2011 .

[86]  Jason H. Moore,et al.  The Role of Genetic Interactions in Neurodevelopmental Disorders , 2015 .

[87]  Antonio Carvajal-Rodríguez,et al.  Simulation of Genomes: A Review , 2008, Current genomics.

[88]  B. Maher,et al.  The case of the missing heritability , 2008 .

[89]  M. Crawford The Human Genome Project. , 1990, Human biology.

[90]  Asako Koike,et al.  SNPInterForest: A new method for detecting epistatic interactions , 2011, BMC Bioinformatics.

[91]  M. L. Calle,et al.  Improving strategies for detecting genetic patterns of disease susceptibility in association studies , 2008, Statistics in medicine.

[92]  Hiroyuki Honda,et al.  Artificial neural network approach for selection of susceptible single nucleotide polymorphisms and construction of prediction model on childhood allergic asthma , 2004, BMC Bioinformatics.

[93]  B Marshall,et al.  Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource , 2004, Nucleic Acids Res..

[94]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[95]  L. Tsui,et al.  Identification of the cystic fibrosis gene: genetic analysis. , 1989, Science.

[96]  Thomas Lumley,et al.  Logic regression for analysis of the association between genetic variation in the renin-angiotensin system and myocardial infarction or stroke. , 2006, American journal of epidemiology.

[97]  Maria Victoria Schneider,et al.  MINT: a Molecular INTeraction database. , 2002, FEBS letters.

[98]  Marylyn D. Ritchie,et al.  GPNN: Power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease , 2006 .

[99]  N. Sepúlveda,et al.  Bayesian analysis of allelic penetrance models for complex binary traits , 2009, Comput. Stat. Data Anal..

[100]  Taesung Park,et al.  Odds ratio based multifactor-dimensionality reduction method for detecting gene – gene interactions , 2006 .

[101]  Chris S. Haley,et al.  Detecting epistasis in human complex traits , 2014, Nature Reviews Genetics.

[102]  Jason H. Moore,et al.  Role for protein–protein interaction databases in human genetics , 2009, Expert review of proteomics.

[103]  Paolo Vineis,et al.  DNA Repair Polymorphisms Modify Bladder Cancer Risk: A Multi-factor Analytic Strategy , 2007, Human Heredity.

[104]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[105]  Tao Huang,et al.  Gene-environment interactions and obesity: recent developments and future directions , 2015, BMC Medical Genomics.

[106]  David M. Reif,et al.  Machine Learning for Detecting Gene-Gene Interactions , 2006, Applied bioinformatics.

[107]  Laurent Excoffier,et al.  SIMCOAL 2.0: a program to simulate genomic diversity over large recombining regions in a subdivided population with a complex history , 2004, Bioinform..

[108]  Jason H. Moore,et al.  Genetic programming neural networks: A powerful bioinformatics tool for human genetics , 2007, Appl. Soft Comput..

[109]  Ingo Ruczinski,et al.  Identifying interacting SNPs using Monte Carlo logic regression , 2005, Genetic epidemiology.

[110]  J. Carulli,et al.  A genome-wide screen of gene–gene interactions for rheumatoid arthritis susceptibility , 2011, Human Genetics.

[111]  Kristel Van Steen,et al.  Travelling the world of gene-gene interactions , 2012, Briefings Bioinform..

[112]  Nelli Shimko,et al.  Gene-Gene Interaction Tests Using SVM and Neural Network Modeling , 2007, 2007 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology.

[113]  David L. Aylor,et al.  From Classical Genetics to Quantitative Genetics to Systems Biology: Modeling Epistasis , 2008, PLoS genetics.

[114]  Kerrie L. Mengersen,et al.  Methods for Identifying SNP Interactions: A Review on Variations of Logic Regression, Random Forest and Bayesian Logistic Regression , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[115]  Alison A Motsinger-Reif The effect of alternative permutation testing strategies on the performance of multifactor dimensionality reduction , 2008, BMC Research Notes.

[116]  C. Cockerham,et al.  An Extension of the Concept of Partitioning Hereditary Variance for Analysis of Covariances among Relatives When Epistasis Is Present. , 1954, Genetics.

[117]  P. Franks,et al.  Gene × Environment Interactions in Obesity: The State of the Evidence , 2013, Human Heredity.

[118]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[119]  Hongsheng Gui,et al.  Comparisons of seven algorithms for pathway analysis using the WTCCC Crohn's Disease dataset , 2011, BMC Research Notes.

[120]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[121]  H. Erlich,et al.  Identification of Novel Single Nucleotide Polymorphisms in Inflammatory Genes as Risk Factors Associated with Trachomatous Trichiasis , 2008, PloS one.

[122]  Jun Zhu,et al.  Development of GMDR-GPU for Gene-Gene Interaction Analysis and Its Application to WTCCC GWAS Data for Type 2 Diabetes , 2013, PloS one.

[123]  Thomas Mailund,et al.  CoaSim: A flexible environment for simulating genetic data under coalescent models , 2005, BMC Bioinformatics.

[124]  David C. Wilson,et al.  Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn Disease. , 2009, American journal of human genetics.

[125]  Fred A. Wright,et al.  Genetics and population analysis Simulating association studies : a data-based resampling method for candidate regions or whole genome scans , 2007 .

[126]  Louis Wehenkel,et al.  An efficient algorithm to perform multiple testing in epistasis screening , 2013, BMC Bioinformatics.

[127]  Can Yang,et al.  GBOOST: a GPU-based tool for detecting gene-gene interactions in genome-wide case control studies , 2011, Bioinform..

[128]  Lance W. Hahn,et al.  Comparison of Neural Network Optimization Approaches for Studies of Human Genetics , 2006, EvoWorkshops.

[129]  Gonçalo R. Abecasis,et al.  GENOME: a rapid coalescent-based whole genome simulator , 2007, Bioinform..

[130]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[131]  Taesung Park,et al.  Log-linear model-based multifactor dimensionality reduction method to detect gene-gene interactions , 2007, Bioinform..

[132]  P. Phillips The language of gene interaction. , 1998, Genetics.

[133]  Haiyan Wang,et al.  Improving accuracy for cancer classification with a new algorithm for genes selection , 2012, BMC Bioinformatics.

[134]  Constantin F. Aliferis,et al.  HITON: A Novel Markov Blanket Algorithm for Optimal Variable Selection , 2003, AMIA.

[135]  Ting Wang,et al.  The UCSC Cancer Genomics Browser , 2009, Nature Methods.

[136]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[137]  Francis S. Collins,et al.  Genes, environment and the value of prospective cohort studies , 2006, Nature Reviews Genetics.

[138]  R. Fisher XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. , 1919, Transactions of the Royal Society of Edinburgh.

[139]  Bertil Schmidt,et al.  Hybrid CPU/GPU Acceleration of Detection of 2-SNP Epistatic Interactions in GWAS , 2014, Euro-Par.

[140]  Jason H. Moore,et al.  Exploratory Visual Analysis of Pharmacogenomic Results , 2004, Pacific Symposium on Biocomputing.

[141]  Gene Ontology Consortium The Gene Ontology (GO) database and informatics resource , 2003 .

[142]  Suneetha Uppu,et al.  A Deep Learning Approach to Detect SNP Interactions , 2016, J. Softw..

[143]  Suneetha Uppu,et al.  Improving Strategy for Discovering Interacting Genetic Variants in Association Studies , 2016, ICONIP.

[144]  Wen-Hsiung Li,et al.  Coalescing into the 21st century: An overview and prospects of coalescent theory. , 1999, Theoretical population biology.

[145]  Kenneth H. Buetow,et al.  PID: the Pathway Interaction Database , 2008, Nucleic Acids Res..

[146]  Biao Li,et al.  SimRare: a program to generate and analyze sequence-based data for association studies of quantitative and qualitative traits , 2012, Bioinform..

[147]  A. Zell,et al.  Integrative Pathway-Based Approach for Genome-Wide Association Studies: Identification of New Pathways for Rheumatoid Arthritis and Type 1 Diabetes , 2013, PloS one.

[148]  W. Bateson Mendel's Principles of Heredity , 1910, Nature.

[149]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[150]  Jake K. Byrnes,et al.  Genome-wide association study of copy number variation in 16,000 cases of eight common diseases and 3,000 shared controls , 2010 .

[151]  George Ellis,et al.  Path: a tool to facilitate pathway-based genetic association analysis , 2009, Bioinform..

[152]  Lingtao Su,et al.  Research on Single Nucleotide Polymorphisms Interaction Detection from Network Perspective , 2015, PloS one.

[153]  Marylyn D. Ritchie,et al.  Pacific Symposium on Biocomputing 14:368-379 (2009) BIOFILTER: A KNOWLEDGE-INTEGRATION SYSTEM FOR THE MULTI-LOCUS ANALYSIS OF GENOME-WIDE ASSOCIATION STUDIES * , 2022 .

[154]  Marylyn D. Ritchie,et al.  ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci , 2010, BioData Mining.

[155]  Jason H. Moore,et al.  BIOINFORMATICS REVIEW , 2005 .

[156]  Xiang Zhang,et al.  TEAM: efficient two-locus epistasis tests in human genome-wide association study , 2010, Bioinform..

[157]  C. J-F,et al.  THE COALESCENT , 1980 .

[158]  Marylyn D Ritchie,et al.  Comparison of approaches for machine‐learning optimization of neural networks for detecting gene‐gene interactions in genetic epidemiology , 2008, Genetic epidemiology.

[159]  Bo Peng,et al.  Forward-time simulations of non-random mating populations using simuPOP , 2008, Bioinform..

[160]  Ian H. Witten,et al.  Data mining in bioinformatics using Weka , 2004, Bioinform..

[161]  Rui Jiang,et al.  A random forest approach to the detection of epistatic interactions in case-control studies , 2009, BMC Bioinformatics.

[162]  Edward Keedwell,et al.  Discovering Gene Networks with a Neural-Genetic Hybrid , 2005, TCBB.

[163]  Yao-Hwei Fang,et al.  SVM‐Based Generalized Multifactor Dimensionality Reduction Approaches for Detecting Gene‐Gene Interactions in Family Studies , 2012, Genetic epidemiology.

[164]  David J. Lunn,et al.  A Bayesian toolkit for genetic association studies , 2006, Genetic epidemiology.

[165]  David M Reif,et al.  A comparison of internal model validation methods for multifactor dimensionality reduction in the case of genetic heterogeneity , 2012, BMC Research Notes.

[166]  D. Hunter Gene–environment interactions in human diseases , 2005, Nature Reviews Genetics.

[167]  M. Daly,et al.  Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology , 2011, PLoS genetics.

[168]  Romdhane Rekaya,et al.  AntEpiSeeker: detecting epistatic interactions for case-control studies using a two-stage ant colony optimization algorithm , 2010, BMC Research Notes.

[169]  M. Sawicki,et al.  Human Genome Project. , 1993, American journal of surgery.

[170]  Katja Ickstadt,et al.  Comparing Logic Regression Based Methods for Identifying SNP Interactions , 2007, BIRD.

[171]  J. Ott,et al.  Detecting gene-gene interactions using support vector machines with L1 penalty , 2010, 2010 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW).

[172]  Ching Lee Koo,et al.  A Review for Detecting Gene-Gene Interactions Using Machine Learning Methods in Genetic Epidemiology , 2013, BioMed research international.

[173]  Thomas Mitchell-Olds,et al.  Mlcoalsim: Multilocus Coalescent Simulations , 2007, Evolutionary bioinformatics online.

[174]  D. Maraganore,et al.  A Genomic Pathway Approach to a Complex Disease: Axon Guidance and Parkinson Disease , 2007, PLoS genetics.

[175]  Taesung Park,et al.  New evaluation measures for multifactor dimensionality reduction classifiers in gene-gene interaction analysis , 2009, Bioinform..

[176]  Ayellet V. Segrè,et al.  Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits , 2010, PLoS genetics.

[177]  Ramón Díaz-Uriarte,et al.  RJaCGH: Bayesian analysis of aCGH arrays for detecting copy number changes and recurrent regions , 2009, Bioinform..

[178]  Xue-wen Chen,et al.  FEPI-MB: identifying SNPs-disease association using a Markov Blanket-based approach , 2011, BMC Bioinformatics.

[179]  Jason H. Moore,et al.  Pathway analysis of genomic data: concepts, methods, and prospects for future development. , 2012, Trends in genetics : TIG.

[180]  Xue-wen Chen,et al.  bNEAT: a Bayesian network method for detecting epistatic interactions in genome-wide association studies , 2011, BMC Genomics.

[181]  Obi L. Griffith,et al.  ORegAnno: an open-access community-driven resource for regulatory annotation , 2007, Nucleic Acids Res..

[182]  Ingo Wegener,et al.  Detecting high-order interactions of single nucleotide polymorphisms using genetic programming , 2007, Bioinform..

[183]  Adele Cutler,et al.  An application of Random Forests to a genome-wide association dataset: Methodological considerations & new findings , 2010, BMC Genetics.

[184]  Ioannis Xenarios,et al.  DIP: The Database of Interacting Proteins: 2001 update , 2001, Nucleic Acids Res..

[185]  Chris S. Haley,et al.  EpiGPU: exhaustive pairwise epistasis scans parallelized on consumer level graphics cards , 2011, Bioinform..

[186]  O. Kempthorne,et al.  The correlation between relatives in a random mating population , 1954, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[187]  Qiang Yang,et al.  SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies , 2009, Bioinform..

[188]  J. H. Moore,et al.  Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. , 2001, American journal of human genetics.

[189]  A. Garrod The Incidence of Alkaptonuria: A study in Chemical Individuality , 1996, Nutrition reviews.

[190]  Matthias Reumann,et al.  High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies , 2015, Health Inf. Sci. Syst..

[191]  Jun S. Liu,et al.  Bayesian inference of epistatic interactions in case-control studies , 2007, Nature Genetics.

[192]  Marit Holden,et al.  GSEA-SNP: applying gene set enrichment analysis to SNP data from genome-wide association studies , 2008, Bioinform..

[193]  Li Ma,et al.  Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies , 2008, BMC Bioinformatics.

[194]  Andreas Ziegler,et al.  On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data , 2010, Bioinform..

[195]  Jason H. Moore,et al.  Ant Colony Optimization for Genome-Wide Genetic Analysis , 2008, ANTS Conference.

[196]  J. Sutcliffe,et al.  Genetic analysis of biological pathway data through genomic randomization , 2011, Human Genetics.

[197]  Jun Zhu,et al.  A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. , 2007, American journal of human genetics.

[198]  Holger Schwender,et al.  Identification of SNP interactions using logic regression. , 2008, Biostatistics.

[199]  M. Ng,et al.  SNP Selection and Classification of Genome-Wide SNP Data Using Stratified Sampling Random Forests , 2012, IEEE Transactions on NanoBioscience.

[200]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[201]  Suneetha Uppu,et al.  Towards Deep Learning in genome-Wide Association Interaction studies , 2016, PACIS.

[202]  Stéphane Dupas,et al.  SimAdapt: an individual‐based genetic model for simulating landscape management impacts on populations , 2013 .

[203]  Xiang Chen,et al.  Willows: a memory efficient tree and forest construction package , 2009, BMC Bioinformatics.

[204]  Yong Zhao,et al.  Cloud Computing and Grid Computing 360-Degree Compared , 2008, GCE 2008.

[205]  C. Hoggart,et al.  Sequence-Level Population Simulations Over Large Genomic Regions , 2007, Genetics.

[206]  Mee Young Park,et al.  Penalized logistic regression for detecting gene interactions. , 2008, Biostatistics.

[207]  Skylar W. Marvel,et al.  Grammatical evolution support vector machines for predicting human genetic disease association , 2012, GECCO '12.

[208]  H. Cordell Detecting gene–gene interactions that underlie human diseases , 2009, Nature Reviews Genetics.