Groundwater fauna in an urban area: natural or affected?

Abstract. In Germany 70 % of the drinking water demand is met by groundwater, whose quality is the product of manifold physical-chemical and biological cleaning processes. As healthy groundwater ecosystems help to provide clean drinking water, it is necessary to assess the ecological conditions of these ecosystems. This is particularly true for densely populated, urban areas, where faunistic groundwater investigations are still scare. The aim of this study is therefore to provide a first-tier assessment of the groundwater fauna in an urban area. Thus, we assess the ecological condition of an anthropogenically influenced aquifer by analysing the groundwater fauna in 39 groundwater monitoring wells in Karlsruhe (Germany) and a nearby forest land. For classification we apply the scheme from the Federal Environmental Agency (UBA), in which a threshold of more than 70 % of Crustaceans and of less than 20 % of Oligochaetes serves as an indication for good ecological conditions. In our study 35 % of the wells in the urban area fulfil these criteria, and even in the pristine forest land only 50 % of the wells indicate fine ecological conditions. While the assessment reveals that ecological conditions in the studied urban area are predominantly not in a good ecological state, there is no clear spatial pattern with respect to land use and anthropogenic impacts. However, there are noticeable differences in the spatial distribution of species and abiotic groundwater characteristics between wells in forest land and the urban area, which indicates that more comprehensive assessment methods are required to fully capture the different effects on groundwater fauna.

[1]  P. Blum,et al.  Groundwater fauna in an urban area – natural or affected? , 2021, Hydrology and Earth System Sciences.

[2]  P. Blum,et al.  Is thermal use of groundwater a pollution? , 2021, Journal of contaminant hydrology.

[3]  D. Galassi,et al.  The impact of nitrate on the groundwater assemblages of European unconsolidated aquifers is likely less severe than expected , 2020, Environmental Science and Pollution Research.

[4]  D. Galassi,et al.  The weighted Groundwater Health Index (wGHI) by Korbel and Hose (2017) in European groundwater bodies in nitrate vulnerable zones , 2020 .

[5]  G. Hose,et al.  Salinity and temperature increase impact groundwater crustaceans , 2020, Scientific Reports.

[6]  Ronald R. Coifman,et al.  Visualizing structure and transitions in high-dimensional biological data , 2019, Nature Biotechnology.

[7]  P. Blum,et al.  Groundwater temperature anomalies in central Europe , 2019, Environmental Research Letters.

[8]  C. Griebler,et al.  The D-A-(C) index: A practical approach towards the microbiological-ecological monitoring of groundwater ecosystems. , 2019, Water research.

[9]  P. Blum,et al.  Worldwide application of aquifer thermal energy storage – A review , 2018, Renewable and Sustainable Energy Reviews.

[10]  P. Blum,et al.  Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany. , 2017, The Science of the total environment.

[11]  G. Hose,et al.  The weighted groundwater health index: Improving the monitoring and management of groundwater resources , 2017 .

[12]  P. Greenfield,et al.  Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems , 2017, Scientific Reports.

[13]  C. Stumpp,et al.  Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes , 2016, Environmental Earth Sciences.

[14]  James G. Mitchell,et al.  Stygofauna enhance prokaryotic transport in groundwater ecosystems , 2016, Scientific Reports.

[15]  P. Blum,et al.  Linking Surface Urban Heat Islands with Groundwater Temperatures. , 2016, Environmental science & technology.

[16]  G. Hose,et al.  Habitat, water quality, seasonality, or site? Identifying environmental correlates of the distribution of groundwater biota , 2015, Freshwater Science.

[17]  C. Griebler,et al.  Groundwater ecosystem services: a review , 2014, Freshwater Science.

[18]  S. Schmidt,et al.  A proposal for a groundwater habitat classification at local scale , 2014 .

[19]  H. J. Hahn,et al.  Bioindikation im Grundwasser funktioniert – Erwiderung zum Kommentar von T. Scheytt zum Beitrag „Grundwasserfauna als Indikator für komplexe hydrogeologische Verhältnisse am westlichen Kaiserstuhl“ von Gutjahr, S., Bork, J. & Hahn, H.J. in Grundwasser 18 (3), 173–184 (2013) , 2014, Grundwasser.

[20]  Kathrin Menberg,et al.  Long-term evolution of anthropogenic heat fluxes into a subsurface urban heat island. , 2013, Environmental science & technology.

[21]  Philipp Blum,et al.  Sustainability and policy for the thermal use of shallow geothermal energy , 2013 .

[22]  H. J. Hahn,et al.  Grundwasserfauna als Indikator für komplexe hydrogeologische Verhältnisse am westlichen Kaiserstuhl , 2013, Grundwasser.

[23]  M. Gąbka,et al.  Distribution patterns and environmental correlates of water mites (Hydrachnidia, Acari) in peatland microhabitats , 2013, Experimental and Applied Acarology.

[24]  Niels Hartog,et al.  The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: modeling of spreading and degradation. , 2013, Journal of contaminant hydrology.

[25]  D. Galassi,et al.  Agricultural impact on Mediterranean alluvial aquifers: do groundwater communities respond? , 2013 .

[26]  K. Schönthaler,et al.  Erster integrierter Umweltbericht für das länderübergreifende UNESCO-Biosphärenreservat Rhön , 2013 .

[27]  C. Griebler,et al.  Stygoregions – a promising approach to a bioregional classification of groundwater systems , 2012, Scientific Reports.

[28]  S. Dolédec,et al.  Surface Water Linkages Regulate Trophic Interactions in a Groundwater Food Web , 2011, Ecosystems.

[29]  Peter Bayer,et al.  Oberflächennahe Geothermie und ihre potenziellen Auswirkungen auf Grundwasserökosysteme , 2011 .

[30]  G. Hose,et al.  A tiered framework for assessing groundwater ecosystem health , 2011, Hydrobiologia.

[31]  Peter Bayer,et al.  International legal status of the use of shallow geothermal energy , 2010 .

[32]  K. Zhu,et al.  The geothermal potential of urban heat islands , 2010 .

[33]  S. Berkhoff Die Meiofauna des Interstitials und Grundwassers als Indikator für Oberflächenwasser-Grundwasser-Interaktionen im Bereich einer Uferfiltrationsanlage , 2010 .

[34]  C. Griebler,et al.  The potential use of fauna and bacteria as ecological indicators for the assessment of groundwater quality. , 2010, Journal of environmental monitoring : JEM.

[35]  Craig A. Taylor,et al.  Shallow groundwater temperature response to climate change and urbanization , 2009 .

[36]  T. Lueders,et al.  Effects of thermal energy discharge on shallow groundwater ecosystems. , 2009, FEMS microbiology ecology.

[37]  F. Malard,et al.  Relationships between environmental variables and groundwater biodiversity at the regional scale. , 2009 .

[38]  M. Zagmajster,et al.  Groundwater biodiversity in Europe. , 2009 .

[39]  F. Malard,et al.  Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness , 2009 .

[40]  M. Christman,et al.  Assessing and conserving groundwater biodiversity: synthesis and perspectives , 2009 .

[41]  H. Hahn,et al.  Distribution patterns of groundwater communities across aquifer types in south‐western Germany , 2009 .

[42]  Marie-José Dole-Olivier,et al.  Towards an optimal sampling strategy to assess groundwater biodiversity: comparison across six European regions , 2009 .

[43]  D. Galassi,et al.  Diversity, ecology and evolution of groundwater copepods , 2009 .

[44]  M. Harvey,et al.  Biodiversity, functional roles and ecosystem services of groundwater invertebrates , 2008 .

[45]  T. Hatton,et al.  Do faunal assemblages reflect the exchange intensity in groundwater zones? , 2007, Hydrobiologia.

[46]  A. Camacho An annotated Checklist of the Syncarida (Crustacea, Malacostraca) of the World , 2006 .

[47]  D. Matzke Untersuchungen zum Verhalten von Grundwasserfauna in Altlastflächen mit vorangegangenem Vergleich unterschiedlicher Sammeltechniken , 2006 .

[48]  H. Hahn Unbaited phreatic traps: A new method of sampling stygofauna , 2005 .

[49]  T. Datry,et al.  Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer , 2005, Journal of the North American Benthological Society.

[50]  H. Hahn,et al.  A comparison of stygofauna communities inside and outside groundwater bores , 2005 .

[51]  D. Renault,et al.  Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. , 2005, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[52]  Andrew J. Boulton,et al.  Aquifers and hyporheic zones: Towards an ecological understanding of groundwater , 2005 .

[53]  L. Deharveng,et al.  Subterranean Ecosystems: A Truncated Functional Biodiversity , 2002 .

[54]  Ward,et al.  Biodiversity: towards a unifying theme for river ecology , 2001 .

[55]  D. Galassi Groundwater copepods: diversity patterns over ecological and evolutionary scales , 2001, Hydrobiologia.

[56]  A. Sabatino,et al.  The biology and ecology of lotic water mites (Hydrachnidia) , 2000 .

[57]  Botosaneanu Stygofauna Mundi: A Faunistic, Distributional, and Ecological Synthesis of the World Fauna Inhabiting Subterranean Waters , 1987 .

[58]  J. Herrmann Temperature dependence of reproduction in Dendrocoelum lacteum (Turbellaria): an experimental approach , 1985 .

[59]  P. Blum,et al.  Heat supply by shallow geothermal energy in Karlsruhe , 2018 .

[60]  Kathrin Menberg,et al.  Subsurface urban heat islands in German cities. , 2013, The Science of the total environment.

[61]  G. Hose,et al.  A tiered framework for assessing groundwater ecosystem , 2011 .

[62]  Maria Avramov,et al.  Dienstleistungen der Grundwasserökosysteme , 2010 .

[63]  J. Eckert,et al.  Lehrbuch der Parasitologie für die Tiermedizin , 2008 .

[64]  S. Takizawa Groundwater Management in Asian Cities , 2008 .

[65]  G. Wirsing,et al.  Hydrogeologischer Bau und Aquifereigenschaften der Lockergesteine im Oberrheingraben (Baden-Württemberg) , 2007 .

[66]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[67]  Nico Goldscheider,et al.  Biozönosen im Grundwasser: Grundlagen und Methoden der Charakterisierung von mikrobiellen Gemeinschaften , 2006 .

[68]  H. Voigt,et al.  Die natürliche, ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland , 2004 .

[69]  Grundwassergefährdung durch organische LuftschadstoffeHrsg: ATV-DVWK Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall , 2001 .

[70]  W. McDowell,et al.  Nitrogen Saturation in Temperate Forest Ecosystems Hypotheses revisited , 2000 .

[71]  M. Yacoubi‐Khebiza,et al.  Etude expérimentale de la sensibilité comparée de trois crustacés stygobies vis-a-vis de diverses substances toxiques pouvant se rencontrer dans les eaux souterraines , 1998 .