New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia

A recent field-intensive program in Shark Bay, Western Australia provides new multi-scale perspectives on the world’s most extensive modern stromatolite system. Mapping revealed a unique geographic distribution of morphologically distinct stromatolite structures, many of them previously undocumented. These distinctive structures combined with characteristic shelf physiography define eight ‘Stromatolite Provinces’. Morphological and molecular studies of microbial mat composition resulted in a revised growth model where coccoid cyanobacteria predominate in mat communities forming lithified discrete stromatolite buildups. This contradicts traditional views that stromatolites with the best lamination in Hamelin Pool are formed by filamentous cyanobacterial mats. Finally, analysis of internal fabrics of stromatolites revealed pervasive precipitation of microcrystalline carbonate (i.e. micrite) in microbial mats forming framework and cement that may be analogous to the micritic microstructures typical of Precambrian stromatolites. These discoveries represent fundamental advances in our knowledge of the Shark Bay microbial system, laying a foundation for detailed studies of stromatolite morphogenesis that will advance our understanding of benthic ecosystems on the early Earth.

[1]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[2]  P. R. Brown Evolution and Diagenesis of Quaternary Carbonate Sequences, Shark Bay, Western , 1975 .

[3]  D. Faith Conservation evaluation and phylogenetic diversity , 1992 .

[4]  Adam M. Phillippy,et al.  Interactive metagenomic visualization in a Web browser , 2011, BMC Bioinformatics.

[5]  A. Knoll,et al.  Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? , 1999, Annual review of earth and planetary sciences.

[6]  R. Reid,et al.  Processes of carbonate precipitation in modern microbial mats , 2009 .

[7]  L. Collins,et al.  Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia , 2012 .

[8]  J. Foster,et al.  Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing. , 2012, Environmental microbiology.

[9]  P. Hoffman Algal Stromatolites: Use in Stratigraphic Correlation and Paleocurrent Determination , 1967, Science.

[10]  M. Allen,et al.  Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay , 2009, Geobiology.

[11]  B. W. Logan,et al.  Cryptozoon and Associate Stromatolites from the Recent, Shark Bay, Western Australia , 1961, The Journal of Geology.

[12]  R. White,et al.  Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics , 2015, The ISME Journal.

[13]  J. Gerring A case study , 2011, Technology and Society.

[14]  R. Knight,et al.  UniFrac: an effective distance metric for microbial community comparison , 2011, The ISME Journal.

[15]  H. Paerl,et al.  The role of microbes in accretion, lamination and early lithification of modern marine stromatolites , 2000, Nature.

[16]  Eoin L. Brodie,et al.  Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB , 2006, Applied and Environmental Microbiology.

[17]  N. Pace,et al.  Composition and Structure of Microbial Communities from Stromatolites of Hamelin Pool in Shark Bay, Western Australia , 2005, Applied and Environmental Microbiology.

[18]  M. Allen,et al.  Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. , 2004, Environmental microbiology.

[19]  R. Riding,et al.  Role of algal eukaryotes in subtidal columnar stromatolite formation. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Reid,et al.  Environmental controls on microbial community cycling in modern marine stromatolites , 2012 .

[21]  P. E. Play ford,et al.  Chapter 8.2 Modern Algal Stromatolites at Hamelin Pool, A Hypersaline Barred Basin in Shark Bay, Western Australia , 1976 .

[22]  R. Reid,et al.  Formation and diagenesis of modern marine calcified cyanobacteria , 2009, Geobiology.

[23]  B. Neilan,et al.  Diversity of cyanobacterial biomarker genes from the stromatolites of Shark Bay, Western Australia. , 2013, Environmental microbiology.

[24]  Nicholas A. Bokulich,et al.  Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing , 2012, Nature Methods.

[25]  Marti J. Anderson,et al.  A new method for non-parametric multivariate analysis of variance in ecology , 2001 .

[26]  R. Reid,et al.  The Microbial Communities of the Modern Marine Stromatolites at Highborne Cay, Bahamas , 2009 .

[27]  L. Collins,et al.  Significance of subtidal microbial deposits in Shark Bay, Australia , 2011 .

[28]  H. Hofmann Precambrian microflora, Belcher Islands, Canada; significance and systematics , 1976 .

[29]  S. Golubić Stromatolites, Fossil and Recent: A Case History , 1983 .

[30]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .

[31]  Rob Knight,et al.  PyNAST: a flexible tool for aligning sequences to a template alignment , 2009, Bioinform..

[32]  Stanley M. Awramik,et al.  Chapter 4.4 Evolutionary Processes in the Formation of Stromatolites , 1976 .

[33]  S. Golubić,et al.  COMPARISON OF HOLOCENE AND MID-PRECAMBRIAN ENTOPHYSALIDACEAE (CYANOPHYTA) IN , 1976 .

[34]  P. Swart,et al.  The Origin of Dolomites in Tertiary Sediments from the Margin of Great Bahama Bank , 2000 .

[35]  L. Margulis,et al.  Environmental evolution: Effects of the origin and evolution of life on Planet Earth , 1992 .

[36]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[37]  P. Hagan Internal Fabrics and Microbial Precipitation in the Stromatolites of Hamelin Pool, Western Australia , 2015 .

[38]  K. Grice,et al.  Diel fluctuations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay, WA , 2014 .

[39]  T. Lee,et al.  Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery , 1992 .

[40]  N. James,et al.  Shark Bay stromatolites: Microfabrics and reinterpretation of origins , 2003 .

[41]  R. Ley,et al.  Innate immunity and intestinal microbiota in the development of Type 1 diabetes , 2008, Nature.

[42]  M. Allen,et al.  Lipid biomarkers in Hamelin Pool microbial mats and stromatolites. , 2010 .

[43]  James R. Cole,et al.  The Ribosomal Database Project: improved alignments and new tools for rRNA analysis , 2008, Nucleic Acids Res..

[44]  Neil Salkind Encyclopedia of Measurement and Statistics , 2006 .

[45]  R. Reid,et al.  Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas , 2009, The ISME Journal.

[46]  R. Stumpf,et al.  Determination of water depth with high‐resolution satellite imagery over variable bottom types , 2003 .