Comparison of Numerical Methods and Open-Source Libraries for Eigenvalue Analysis of Large-Scale Power Systems

[1]  Federico Milano,et al.  Semi-Implicit Formulation of Differential-Algebraic Equations for Transient Stability Analysis , 2016, IEEE Transactions on Power Systems.

[2]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[3]  Federico Milano,et al.  The Möbius transform effect in singular systems of differential equations , 2019, Appl. Math. Comput..

[4]  Nelson Martins,et al.  The dominant pole spectrum eigensolver [for power system stability analysis] , 1997 .

[5]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[6]  Pengfei Tian,et al.  An Improved IRA Algorithm and Its Application in Critical Eigenvalues Searching for Low Frequency Oscillation Analysis , 2017, IEEE Transactions on Power Systems.

[7]  William G. Poole,et al.  A geometric theory for the QR, LU and power iterations. , 1973 .

[8]  N. Uchida,et al.  A new eigen-analysis method of steady-state stability studies for large power systems: S matrix method , 1988 .

[9]  L. Wang,et al.  Application of sparse eigenvalue techniques to the small signal stability analysis of large power systems , 1989, Conference Papers Power Industry Computer Application Conference.

[10]  L. Wang,et al.  Sequential computation of the complete eigensystem for the study zone in small signal stability analysis of large power systems , 1988 .

[11]  R. Bennon,et al.  Eigenvalue Analysis of Synchronizing Power Flow Oscillations in Large Electric Power Systems , 1982, IEEE Transactions on Power Apparatus and Systems.

[12]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[13]  Federico Milano,et al.  Participation Factors for Singular Systems of Differential Equations , 2020, Circuits Syst. Signal Process..

[14]  Joost Rommes,et al.  Computing rightmost eigenvalues for small-signal stability assessment of large scale power systems , 2010, IEEE PES General Meeting.

[15]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[16]  George C. Verghese,et al.  Selective Modal Analysis with Applications to Electric Power Systems, PART I: Heuristic Introduction , 1982 .

[17]  W. Liu,et al.  Calculation of Rightmost Eigenvalues in Power Systems Using the Jacobi–Davidson Method , 2006, IEEE Transactions on Power Systems.

[18]  Guangchao Geng,et al.  A Parallelized Contour Integral Rayleigh–Ritz Method for Computing Critical Eigenvalues of Large-Scale Power Systems , 2018, IEEE Transactions on Smart Grid.

[19]  N. Martins,et al.  New methods for fast small-signal stability assessment of large scale power systems , 1995 .

[20]  Zhengchun Du,et al.  Computing Critical Eigenvalues of Power Systems Using Inexact Two-Sided Jacobi-Davidson , 2011, IEEE Transactions on Power Systems.

[21]  K. Bathe,et al.  Solution methods for eigenvalue problems in structural mechanics , 1973 .

[22]  C. Y. Chung,et al.  A Combined TSA-SPA Algorithm for Computing Most Sensitive Eigenvalues in Large-Scale Power Systems , 2013, IEEE Transactions on Power Systems.

[23]  M. G. Lauby,et al.  A comprehensive computer program package for small signal stability analysis of power systems , 1990 .

[24]  Richard B. Lehoucq,et al.  Anasazi software for the numerical solution of large-scale eigenvalue problems , 2009, TOMS.

[25]  Hiroto Tadano,et al.  A numerical method for nonlinear eigenvalue problems using contour integrals , 2009, JSIAM Lett..

[26]  Ping Tak Peter Tang,et al.  FEAST As A Subspace Iteration Eigensolver Accelerated By Approximate Spectral Projection , 2013, SIAM J. Matrix Anal. Appl..

[27]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[28]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[29]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[30]  Guangchao Geng,et al.  A Parallel Contour Integral Method for Eigenvalue Analysis of Power Systems , 2017, IEEE Transactions on Power Systems.

[31]  J. G. F. Francis,et al.  The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..

[32]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[33]  N. Martins Efficient Eigenvalue and Frequency Response Methods Applied to Power System Small-Signal Stability Studies , 1986, IEEE Transactions on Power Systems.

[34]  T. Sakurai,et al.  CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems , 2007 .

[35]  Burton S. Garbow,et al.  EISPACK — A package of matrix eigensystem routines , 1974 .

[36]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[37]  S. Gomes,et al.  Sequential Computation of Transfer Function Dominant Poles of s-Domain System Models , 2009, IEEE Transactions on Power Systems.

[38]  R. Mises,et al.  Praktische Verfahren der Gleichungsauflösung . , 1929 .

[39]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[40]  Federico Milano,et al.  Primal and Dual Generalized Eigenvalue Problems for Power Systems Small-Signal Stability Analysis , 2017, IEEE Transactions on Power Systems.

[41]  Jack J. Dongarra,et al.  Towards dense linear algebra for hybrid GPU accelerated manycore systems , 2009, Parallel Comput..

[42]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..

[43]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[44]  Eric Polizzi,et al.  A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.

[45]  Federico Milano,et al.  Modal Participation Factors of Algebraic Variables , 2020, IEEE Transactions on Power Systems.

[46]  Nelson Martins,et al.  Computing dominant poles of power system transfer functions , 1996 .

[47]  Alston S. Householder,et al.  Unitary Triangularization of a Nonsymmetric Matrix , 1958, JACM.

[48]  Guangchao Geng,et al.  An Efficient Parallel Krylov-Schur Method for Eigen-Analysis of Large-Scale Power Systems , 2016, IEEE Transactions on Power Systems.

[49]  N. Martins,et al.  Efficient computation of transfer function dominant poles using subspace acceleration , 2006, IEEE Transactions on Power Systems.

[50]  B. Gao,et al.  Voltage Stability Evaluation Using Modal Analysis , 1992, IEEE Power Engineering Review.

[51]  J. M. Campagnolo,et al.  Refactored bi-iteration: a high performance eigensolution method for large power system matrices , 1996 .

[52]  Joe Chow,et al.  A Sparsity-Based Technique for Identifying Slow-Coherent Areas in Large Power Systems , 1984, IEEE Transactions on Power Apparatus and Systems.

[53]  Yuefan Deng,et al.  New trends in high performance computing , 2001, Parallel Computing.