On the Chandrasekhar limit in generalized uncertainty principles

[1]  A. Sulaksono,et al.  Minimal length, nuclear matter, and neutron stars , 2022, The European Physical Journal C.

[2]  C. Long,et al.  Removing the divergence of Chandrasekhar limit caused by generalized uncertainty principle , 2022, The European Physical Journal C.

[3]  G. Montani,et al.  Comparison of the Semiclassical and Quantum Dynamics of the Bianchi I Cosmology in the Polymer and GUP Extended Paradigms , 2021, International Journal of Geometric Methods in Modern Physics.

[4]  Saurya Das,et al.  Baryon asymmetry from the generalized uncertainty principle , 2021, Physics Letters B.

[5]  A. Sulaksono,et al.  White dwarfs and generalized uncertainty principle , 2021, 2104.11774.

[6]  J. Esguerra,et al.  Implications of the generalized uncertainty principle on the Walecka model equation of state and neutron star structure , 2021 .

[7]  M. Moussa,et al.  Generalized uncertainty principle and stochastic gravitational wave background spectrum , 2021, 2101.04747.

[8]  L. Amendola,et al.  Testing gravity with the Milky Way: Yukawa potential , 2020, Physical Review D.

[9]  B. C. Lütfüoğlu,et al.  New Higher-Order Generalized Uncertainty Principle: Applications , 2020, International Journal of Theoretical Physics.

[10]  G. He,et al.  Higher-order generalized uncertainty principle corrections to the Jeans mass , 2020, The European Physical Journal C.

[11]  A. Mathew,et al.  Existence of Chandrasekhar’s limit in generalized uncertainty white dwarfs , 2020, Royal Society Open Science.

[12]  S. Viaggiu A proposal for Heisenberg uncertainty principle and STUR for curved backgrounds: an application to white dwarf, neutron stars and black holes , 2020, Classical and Quantum Gravity.

[13]  J. Esguerra,et al.  Modified structure equations and mass–radius relations of white dwarfs arising from the linear generalized uncertainty principle , 2020, International Journal of Modern Physics D.

[14]  F. A. Brito,et al.  Quantum-corrected scattering and absorption of a Schwarzschild black hole with GUP , 2020, 2003.13464.

[15]  C. Frenk,et al.  The edge of the Galaxy , 2020, Monthly Notices of the Royal Astronomical Society.

[16]  A. Iorio,et al.  Generalized uncertainty principle in three-dimensional gravity and the BTZ black hole , 2019, Physical Review D.

[17]  H. Hassanabadi,et al.  A new higher order GUP: one dimensional quantum system , 2019, The European Physical Journal C.

[18]  S. Jalalzadeh,et al.  Interacting dark side of universe through generalized uncertainty principle , 2019, International Journal of Modern Physics D.

[19]  Y. Yao,et al.  Generalized uncertainty principle and white dwarfs redux: How the cosmological constant protects the Chandrasekhar limit , 2018, Physical Review D.

[20]  W. Chung,et al.  New generalized uncertainty principle from the doubly special relativity , 2018, Physics Letters B.

[21]  Y. Ong Generalized uncertainty principle, black holes, and white dwarfs: a tale of two infinities , 2018, Journal of Cosmology and Astroparticle Physics.

[22]  I. Sawicki,et al.  White dwarfs and revelations , 2018, 1803.00541.

[23]  F. Vernizzi,et al.  Vainshtein screening in scalar-tensor theories before and after GW170817: Constraints on theories beyond Horndeski , 2017, Physical Review D.

[24]  K. Koyama,et al.  Vainshtein mechanism after GW170817 , 2017, 1711.06661.

[25]  L. Amendola,et al.  Fate of Large-Scale Structure in Modified Gravity After GW170817 and GRB170817A. , 2017, Physical review letters.

[26]  C. Kouvaris,et al.  White Dwarf Critical Tests for Modified Gravity. , 2015, Physical review letters.

[27]  R. Rashidi Generalized uncertainty principle and the maximum mass of ideal white dwarfs , 2015, 1512.06356.

[28]  Daisuke Yamauchi,et al.  Breaking of Vainshtein screening in scalar-tensor theories beyond Horndeski , 2014, 1411.4130.

[29]  J. Barrow,et al.  Maximum tension: with and without a cosmological constant , 2014, 1408.1820.

[30]  Abdel Nasser Tawfik,et al.  Generalized Uncertainty Principle: Approaches and Applications , 2014, 1410.0206.

[31]  Pisin Chen,et al.  Generalized uncertainty principle: implications for black hole complementarity , 2014, 1408.3763.

[32]  R. Ruffini,et al.  Relativistic Feynman-Metropolis-Teller treatment at finite temperatures , 2013, 1312.2434.

[33]  M. Gorji,et al.  Deviation from the standard uncertainty principle and the dark energy problem , 2013, 1310.8065.

[34]  Andrew W. Steiner,et al.  THE NEUTRON STAR MASS–RADIUS RELATION AND THE EQUATION OF STATE OF DENSE MATTER , 2012, 1205.6871.

[35]  P. Pedram A Higher Order GUP with Minimal Length Uncertainty and Maximal Momentum II: Applications , 2012, 1210.5334.

[36]  P. Pedram A higher order GUP with minimal length uncertainty and maximal momentum , 2011, 1110.2999.

[37]  S. Chattopadhyay,et al.  A Dark Energy Model with Generalized Uncertainty Principle in the Emergent, Intermediate and Logamediate Scenarios of the Universe , 2011, 1105.4538.

[38]  G. Veneziano,et al.  A bound on the effective gravitational coupling from semiclassical black holes , 2009, 0907.5516.

[39]  D. Garfinkle The Planck mass and the Chandrasekhar limit , 2009 .

[40]  Yong-Wan Kim,et al.  NEW AGEGRAPHIC DARK ENERGY MODEL WITH GENERALIZED UNCERTAINTY PRINCIPLE , 2008, 0803.0574.

[41]  C. Schiller Simple Derivation of Minimum Length, Minimum Dipole Moment and Lack of Space–Time Continuity , 2006 .

[42]  C. Schiller General Relativity and Cosmology Derived From Principle of Maximum Power or Force , 2005, physics/0607090.

[43]  M. Tamura,et al.  Near-Infrared Imaging Survey of Bok Globules: Density Structure , 2005, astro-ph/0506205.

[44]  Mark Wayne Paris,et al.  Hybrid Stars that Masquerade as Neutron Stars , 2004, nucl-th/0411016.

[45]  J. Gamboa,et al.  Quantum Uncertainty in Doubly Special Relativity , 2004, hep-th/0405285.

[46]  L. Smolin,et al.  String theories with deformed energy momentum relations, and a possible nontachyonic bosonic string , 2004, hep-th/0401087.

[47]  J. Lattimer,et al.  The Physics of Neutron Stars , 2004, Science.

[48]  G. Gibbons,et al.  The Maximum Tension Principle in General Relativity , 2002, hep-th/0210109.

[49]  Pisin Chen,et al.  Black Hole Remnants and Dark Matter , 2002, gr-qc/0205106.

[50]  D. Minic,et al.  Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem , 2002, hep-th/0201017.

[51]  L. Smolin,et al.  Lorentz invariance with an invariant energy scale. , 2001, Physical review letters.

[52]  Pisin Chen,et al.  The Generalized Uncertainty Principle and Black Hole Remnants , 2001, gr-qc/0106080.

[53]  W. Hillebrandt,et al.  Type IA Supernova Explosion Models , 2000, astro-ph/0006305.

[54]  N. Glendenning Lower limit on radius as a function of mass for neutron stars. , 2000, Physical review letters.

[55]  F. Scardigli Generalized Uncertainty Principle in Quantum Gravity from Micro-Black Hole Gedanken Experiment , 1999, hep-th/9904025.

[56]  M. Maggiore A generalized uncertainty principle in quantum gravity , 1993, hep-th/9301067.

[57]  P. Provero,et al.  MINIMUM PHYSICAL LENGTH AND THE GENERALIZED UNCERTAINTY PRINCIPLE IN STRING THEORY , 1990 .

[58]  D. Gross,et al.  String Theory Beyond the Planck Scale , 1988 .

[59]  D. Gross,et al.  The High-Energy Behavior of String Scattering Amplitudes , 1987 .

[60]  G. Veneziano A Stringy Nature Needs Just Two Constants , 1986 .

[61]  I. Antoniadis,et al.  On the cosmological constant problem , 1984 .

[62]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[63]  H. Buchdahl General Relativistic Fluid Spheres , 1959 .

[64]  J. Oppenheimer,et al.  On Massive neutron cores , 1939 .

[65]  R. Tolman Static Solutions of Einstein's Field Equations for Spheres of Fluid , 1939 .

[66]  S. Chandrasekhar The highly collapsed configurations of a stellar mass (Second paper) , 1935 .

[67]  E. A. Milne,et al.  The Highly Collapsed Configurations of a Stellar Mass , 1931 .

[68]  E. C. Stoner V. The limiting density in white dwarf stars , 1929 .