Intelligent Search on the Internet

The Web has grown from a simple hypertext system for research labs to an ubiquitous information system including virtually all human knowledge, e.g., movies, images, music, documents, etc. The traditional browsing activity seems to be often inadequate to locate information satisfying the user needs. Even search engines, based on the Information Retrieval approach, with their huge indexes show many drawbacks, which force users to sift through long lists of results or reformulate queries several times. Recently, an important research activity effort has been focusing on this vast amount of machine-accessible knowledge and on how it can be exploited in order to match the user needs. The personalization and adaptation of the human-computer interaction in information seeking by means of machine learning techniques and in AI-based representations of the information help users to address the overload problem. This chapter illustrates the most important approaches proposed to personalize the access to information, in terms of gathering resources related to given topics of interest and ranking them as a function of the current user needs and activities, as well as examples of prototypes and Web systems.

[1]  Filippo Menczer,et al.  Adaptive Retrieval Agents: Internalizing Local Context and Scaling up to the Web , 2000, Machine Learning.

[2]  Thorsten Joachims,et al.  Web Watcher: A Tour Guide for the World Wide Web , 1997, IJCAI.

[3]  Dik Lun Lee,et al.  A World Wide Web Resource Discovery System , 1995, World Wide Web J..

[4]  Susan Gauch,et al.  Personalizing Search Based on User Search Histories , 2004 .

[5]  Gary Boone,et al.  Concept features in Re:Agent, an intelligent Email agent , 1998, AGENTS '98.

[6]  Marvin Minsky,et al.  Semantic Information Processing , 1968 .

[7]  Antonio Gulli,et al.  The indexable web is more than 11.5 billion pages , 2005, WWW '05.

[8]  Hugh C. Davis,et al.  Hypertext'99 : Returning to our Diverse Roots : Proceedings of the 10th ACM Conference on Hypertext and Hypermedia, Darmstadt, Germany, February 21-25, 1999 , 1999 .

[9]  Felix A. Fischer,et al.  Cooperative Information Agents XI , 2008 .

[10]  Andrew McCallum,et al.  A comparison of event models for naive bayes text classification , 1998, AAAI 1998.

[11]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[12]  Soumen Chakrabarti,et al.  Accelerated focused crawling through online relevance feedback , 2002, WWW.

[13]  Sandra Carberry,et al.  Techniques for Plan Recognition , 2001, User Modeling and User-Adapted Interaction.

[14]  Barry Smyth,et al.  Exploiting Query Repetition and Regularity in an Adaptive Community-Based Web Search Engine , 2004, User Modeling and User-Adapted Interaction.

[15]  Huan Liu,et al.  CubeSVD: a novel approach to personalized Web search , 2005, WWW '05.

[16]  B. Pinkerton,et al.  Finding What People Want : Experiences with the WebCrawler , 1994, WWW Spring 1994.

[17]  Henry Lieberman,et al.  Letizia: An Agent That Assists Web Browsing , 1995, IJCAI.

[18]  Steven Pinker,et al.  Lexical and Conceptual Semantics , 1991 .

[19]  Andrew McCallum,et al.  Using Reinforcement Learning to Spider the Web Efficiently , 1999, ICML.

[20]  Alessandro Micarelli,et al.  Anatomy and Empirical Evaluation of an Adaptive Web-Based Information Filtering System , 2004, User Modeling and User-Adapted Interaction.

[21]  Chew Lim Tan,et al.  A comprehensive comparative study on term weighting schemes for text categorization with support vector machines , 2005, WWW '05.

[22]  Giovanni Soda,et al.  Text categorization for multi-page documents: a hybrid naive Bayes HMM approach , 2001, JCDL '01.

[23]  Bruce Krulwich,et al.  The ContactFinder Agent: Answering Bulletin Board Questions with Referrals , 1996, AAAI/IAAI, Vol. 1.

[24]  Robert M. Fung,et al.  Applying Bayesian networks to information retrieval , 1995, CACM.

[25]  James Allan,et al.  The effect of adding relevance information in a relevance feedback environment , 1994, SIGIR '94.

[26]  Oren Etzioni,et al.  A scalable comparison-shopping agent for the World-Wide Web , 1997, AGENTS '97.

[27]  Michael H. Pryor,et al.  The Effects of Singular Value Decomposition on Collaborative Filtering , 1998 .

[28]  Brian D. Davison Topical locality in the Web , 2000, SIGIR '00.

[29]  François Fages,et al.  Principles and Practice of Semantic Web Reasoning, Third International Workshop, PPSWR 2005, Dagstuhl Castle, Germany, September 11-16, 2005, Proceedings , 2005, PPSWR.

[30]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[31]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender Systems , 2000 .

[32]  Pattie Maes,et al.  Amalthaea: An Evolving Multi-Agent Information Filtering and Discovery System for the WWW , 2004, Autonomous Agents and Multi-Agent Systems.

[33]  C. Lee Giles,et al.  DEADLINER: building a new niche search engine , 2000, CIKM '00.

[34]  Alon Y. Halevy,et al.  Intelligent Internet systems , 2000, Artif. Intell..

[35]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[36]  Carlo Strapparava,et al.  User Modelling for News Web Sites with Word Sense Based Techniques , 2004, User Modeling and User-Adapted Interaction.

[37]  Stephen E. Robertson,et al.  On relevance weights with little relevance information , 1997, SIGIR '97.

[38]  Henry Lieberman,et al.  Let's browse: a collaborative Web browsing agent , 1998, IUI '99.

[39]  G. Theraulaz,et al.  Inspiration for optimization from social insect behaviour , 2000, Nature.

[40]  T. Joachims WebWatcher : A Tour Guide for the World Wide Web , 1997 .

[41]  Peter Dolog,et al.  Towards the Adaptive Semantic Web , 2003, PPSWR.

[42]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[43]  Jacques Savoy,et al.  Retrieval effectiveness on the web , 2001, Inf. Process. Manag..

[44]  William S. Cooper,et al.  A definition of relevance for information retrieval , 1971, Inf. Storage Retr..

[45]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[46]  Fabio Gasparetti,et al.  Swarm Intelligence: Agents for Adaptive Web Search , 2004, ECAI.

[47]  Keishi Tajima,et al.  Finding context paths for Web pages , 1999, Hypertext.

[48]  Alessandro Micarelli,et al.  Text Categorization in an Intelligent Agent for Filtering Information on the Web , 2001, Int. J. Pattern Recognit. Artif. Intell..

[49]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[50]  Fabio Gasparetti,et al.  Adaptive Web Search Based on a Colony of Cooperative Distributed Agents , 2003, CIA.

[51]  Michael J. Pazzani,et al.  Syskill & Webert: Identifying Interesting Web Sites , 1996, AAAI/IAAI, Vol. 1.

[52]  Krishna Bharat,et al.  Personalized, interactive news on the Web , 1998, Multimedia Systems.

[53]  Alessandro Micarelli,et al.  A Hybrid Architecture for User-Adapted Information Filtering on the World Wide Web , 1997 .

[54]  Martin van den Berg,et al.  Focused Crawling: A New Approach to Topic-Specific Web Resource Discovery , 1999, Comput. Networks.

[55]  Philip S. Yu,et al.  Intelligent crawling on the World Wide Web with arbitrary predicates , 2001, WWW '01.

[56]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender System - A Case Study , 2000 .

[57]  Clement T. Yu,et al.  Personalized Web search for improving retrieval effectiveness , 2004, IEEE Transactions on Knowledge and Data Engineering.