Model for melt blockage (slug) relocation and physico-chemical interactions during core degradation under severe accident conditions

The model describing massive melt blockage (slug) relocation and physico-chemical interactions with steam and surrounding fuel rods of a bundle is developed on the base of the observations in the CORA tests. Mass exchange owing to slug oxidation and fuel rods dissolution is described by the previously developed 2D model for the molten pool oxidation. Heat fluxes in oxidising melt along with the oxidation heat effect at the melt relocation front are counterbalanced by the heat losses in the surrounding media and the fusion heat effect of the Zr claddings attacked by the melt. As a result, the slug relocation velocity is calculated from the heat flux matches at the melt propagation front (Stefan problem). A numerical module simulating the slug behaviour is developed by tight coupling of the heat and mass exchange modules. The new model demonstrates a reasonable capability to simulate the main features of the massive slug behaviour observed in the CORA-W1 test.