Robust optimal risk sharing and risk premia in expanding pools

We consider the problem of optimal risk sharing in a pool of cooperative agents. We analyze the asymptotic behavior of the certainty equivalents and risk premia associated with the Pareto optimal risk sharing contract as the pool expands. We first study this problem under expected utility preferences with an objectively or subjectively given probabilistic model. Next, we develop a robust approach by explicitly taking uncertainty about the probabilistic model (ambiguity) into account. The resulting robust certainty equivalents and risk premia compound risk and ambiguity aversion. We provide explicit results on their limits and rates of convergence, induced by Pareto optimal risk sharing in expanding pools.

[1]  Roger J. A. Laeven,et al.  Robust Portfolio Choice and Indifference Valuation , 2014, Math. Oper. Res..

[2]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[3]  H. Föllmer,et al.  Probabilistic Aspects of Finance , 2012, 1309.7759.

[4]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[5]  M. Teboulle,et al.  AN OLD‐NEW CONCEPT OF CONVEX RISK MEASURES: THE OPTIMIZED CERTAINTY EQUIVALENT , 2007 .

[6]  K. Borch Equilibrium in a Reinsurance Market , 1962 .

[7]  D. Schmeidler Integral representation without additivity , 1986 .

[8]  W. DuMouchel The Pareto optimality of an n-Company reinsurance treaty , 1968 .

[9]  Nicole El Karoui,et al.  Pricing Via Utility Maximization and Entropy , 2000 .

[10]  K. Arrow,et al.  Uncertainty and the Welfare Economics of Medical Care (American Economic Review, 1963) , 2001, Uncertain Times.

[11]  Stephen A. Ross,et al.  Adding Risks: Samuelson's Fallacy of Large Numbers Revisited , 1999, Journal of Financial and Quantitative Analysis.

[12]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[13]  M. Teboulle,et al.  Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming , 1986 .

[14]  Pauline Barrieu,et al.  Inf-convolution of risk measures and optimal risk transfer , 2005, Finance Stochastics.

[15]  William S. Jewell,et al.  Optimal Risk Exchanges , 1979, ASTIN Bulletin.

[16]  Tomasz Strzalecki,et al.  Axiomatic Foundations of Multiplier Preferences , 2009 .

[17]  N. El Karoui,et al.  Pricing, Hedging and Optimally Designing Derivatives via Minimization of Risk Measures , 2007, 0708.0948.

[18]  Convex Capital Requirements for Large Portfolios , 2011 .

[19]  Roger J. A. Laeven,et al.  Worst case risk measurement: back to the future? , 2011 .

[20]  Marco Scarsini,et al.  Optimal risk sharing with background risk , 2007, J. Econ. Theory.

[21]  Robert B. Wilson THE THEORY OF SYNDICATES , 1968 .

[22]  C. Gollier The economics of risk and time , 2001 .

[23]  Massimo Marinacci,et al.  Ambiguity Made Precise: A Comparative Foundation , 1998, J. Econ. Theory.

[24]  P. Samuelson Risk and uncertainty: a fallacy of large numbers , 1963 .

[25]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[26]  Massimo Marinacci,et al.  Learning from ambiguous urns , 2002 .

[27]  H. Gerber Pareto-Optimal Risk Exchanges and Related Decision Problems , 1978, ASTIN Bulletin.

[28]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[29]  H. Gerber,et al.  On convex principles of premium calculation , 1985 .

[30]  Rose-Anne Dana Comonotonicity, Efficient Risk-Sharing and Equilibria in Markets with Short-Selling for Concave Law-Invariant Utilities , 2011 .

[31]  H. Gerber,et al.  Authors’ Reply: Utility Functions: From Risk Theory to Finance - Discussion by Hangsuck Lee; Alastair G. Longley-Cook; Heinz H. Müller; Stanley R. Pliska; Elias S.W. Shiu; Virginia R. Young , 1998 .

[32]  Massimo Marinacci,et al.  Uncertainty averse preferences , 2011, J. Econ. Theory.

[33]  Alexander Shapiro,et al.  Optimization of Convex Risk Functions , 2006, Math. Oper. Res..

[34]  Gregor Svindland,et al.  Comonotone Pareto optimal allocations for law invariant robust utilities on L1 , 2014, Finance Stochastics.

[35]  Rüschendorf Ludger,et al.  Characterization of optimal risk allocations for convex risk functionals , 2009 .

[36]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[37]  Douglas W. Diamond Financial Intermediation and Delegated Monitoring , 1984 .

[38]  Marc Teboulle,et al.  Penalty Functions and Duality in Stochastic Programming Via ϕ-Divergence Functionals , 1987, Math. Oper. Res..

[39]  Isaac Meilijson,et al.  Co-monotone allocations, Bickel-Lehmann dispersion and the Arrow-Pratt measure of risk aversion , 1994, Ann. Oper. Res..

[40]  H. Föllmer,et al.  ENTROPIC RISK MEASURES: COHERENCE VS. CONVEXITY, MODEL AMBIGUITY AND ROBUST LARGE DEVIATIONS , 2011 .

[41]  Hans U. Gerber A.S.A.,et al.  Utility Functions: From Risk Theory to Finance , 1998 .

[42]  Damir Filipovic,et al.  Optimal capital and risk allocations for law- and cash-invariant convex functions , 2008, Finance Stochastics.

[43]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[44]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[45]  Abraham Wald,et al.  Statistical Decision Functions , 1951 .

[46]  Roger J. A. Laeven,et al.  Entropy Coherent and Entropy Convex Measures of Risk , 2013, Math. Oper. Res..

[47]  Larry G. Epstein,et al.  Learning Under Ambiguity , 2002 .

[48]  R. Dana,et al.  A REPRESENTATION RESULT FOR CONCAVE SCHUR CONCAVE FUNCTIONS , 2005 .

[49]  Hans U. Gerber,et al.  An introduction to mathematical risk theory , 1982 .

[50]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[51]  Qihe Tang,et al.  A Comonotonic Image of Independence for Additive Risk Measures , 2004 .

[52]  M. Frittelli The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .

[53]  Ludger Rüschendorf,et al.  On comonotonicity of Pareto optimal risk sharing , 2008 .

[54]  D. Heath,et al.  Pareto Equilibria with coherent measures of risk , 2004 .

[55]  Michael Mania,et al.  Dynamic exponential utility indifference valuation , 2005 .

[56]  Alain Chateauneuf,et al.  Ambiguity through confidence functions , 2009 .

[57]  Hélyette Geman,et al.  Pricing and hedging in incomplete markets , 2001 .

[58]  Guillaume Carlier,et al.  Core of convex distortions of a probability , 2003, J. Econ. Theory.

[59]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[60]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[61]  Tomasz Strzalecki,et al.  Probabilistic Sophistication and Variational Preferences , 2010, J. Econ. Theory.

[62]  F. Hans Probabilistic aspects of finance , 2013 .

[63]  M. Frittelli,et al.  Putting order in risk measures , 2002 .

[64]  E. Jouini,et al.  OPTIMAL RISK SHARING FOR LAW INVARIANT MONETARY UTILITY FUNCTIONS , 2008 .

[65]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[66]  J. Pratt RISK AVERSION IN THE SMALL AND IN THE LARGE11This research was supported by the National Science Foundation (grant NSF-G24035). Reproduction in whole or in part is permitted for any purpose of the United States Government. , 1964 .