Chemical solution deposition of ferroelectric Sr:HfO2 film from inorganic salt precursors

Abstract Strontium doped hafnium oxide (Sr:HfO 2 ) ferroelectric thin films with strontium concentrations ranging from 0 to 20mol% were processed with inorganic hafnium source and strontium source using a chemical solution deposition technique. The co-existence of monoclinic phase and ferroelectric orthorhombic phase in the Sr doped HfO 2 thin film was confirmed by x-ray diffraction and high-resolution transmission electron microscopy results. The atomic force microscope measurements were adopted and the thin films showed crack-free surface. The intrinsic ferroelectricity of the doped HfO 2 thin films could be demonstrated by polarization–voltage hysteresis loops together with piezoelectric force microscope. The maximum twofold remnant polarization value of 3.02 μC/cm 2 with a coercive field of 2.0 MV/cm was achieved when the Sr content was 7.5 mol%. Meanwhile, the polarization didn't show obvious degradation until 10 7 electric cycles, indicating the good fatigue performance of the Sr:HfO 2 film. These findings indicate that it is a feasible way to prepare Sr:HfO 2 ferroelectric thin films via chemical solution deposition with inorganic salt precursors.

[1]  Patrick Polakowski,et al.  Ferroelectricity in undoped hafnium oxide , 2015 .

[2]  A. Zenkevich,et al.  Fully ALD-grown TiN/Hf0.5Zr0.5O2/TiN stacks: Ferroelectric and structural properties , 2016 .

[3]  Thomas Mikolajick,et al.  Structural Changes Underlying Field‐Cycling Phenomena in Ferroelectric HfO2 Thin Films , 2016 .

[4]  Amit Kumar,et al.  Ferroelectricity in Si‐Doped HfO2 Revealed: A Binary Lead‐Free Ferroelectric , 2014, Advanced materials.

[5]  Saeed Moghaddam,et al.  TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films , 2015 .

[6]  Piezoelectric free-standing thick-film structures for material characterization and energy harvesting applications , 2015, 2015 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM).

[7]  U. Böttger,et al.  Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors , 2011 .

[8]  Rainer Waser,et al.  Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes , 2014 .

[9]  Jie Yang,et al.  Annealing temperature effects on Bi6Fe2Ti3O18/LaNiO3/Si thin films by an all-solution approach , 2017 .

[10]  Thomas Mikolajick,et al.  Ferroelectricity and Antiferroelectricity of Doped Thin HfO2‐Based Films , 2015, Advanced materials.

[11]  Fei Cao,et al.  Wake-up effects in Si-doped hafnium oxide ferroelectric thin films , 2013 .

[12]  Christoph Adelmann,et al.  Impact of different dopants on the switching properties of ferroelectric hafniumoxide , 2014 .

[13]  Chao Chen,et al.  Improved tunable properties of Co doped Ba0.8Sr0.2TiO3 thin films prepared by sol-gel method , 2017 .

[14]  Thomas Mikolajick,et al.  Hafnium Oxide Based CMOS Compatible Ferroelectric Materials , 2012 .

[15]  Jacob L. Jones,et al.  Ferroelectric phenomena in Si-doped HfO2 thin films with TiN and Ir electrodes , 2014 .

[16]  Stefan Slesazeck,et al.  Physical Mechanisms behind the Field‐Cycling Behavior of HfO2‐Based Ferroelectric Capacitors , 2016 .

[17]  Chi Qingguo,et al.  Highly (100)-oriented sandwich structure of (Na0.85K0.15)0.5Bi0.5TiO3 composite films with outstanding pyroelectric properties , 2016 .

[18]  C. Hwang,et al.  The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity , 2014 .

[19]  S. Dey,et al.  Sol‐Gel Route to Ferroelectric Layer‐Structured Perovskite SrBi2Ta2O9 and SrBi2Nb2O9 Thin Films , 2005 .

[20]  S. Slesazeck,et al.  Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[21]  Lide Zhang,et al.  Effects of rapid thermal annealing on interfacial and electrical properties of Gd-doped HfO2 high-k gate dielectrics , 2015 .

[22]  J. Zhai,et al.  High recoverable energy storage density and large piezoelectric response in (Bi0.5Na0.5)TiO3-PbTiO3 thin films prepared by a sol-gel method , 2017 .

[23]  Thomas Mikolajick,et al.  Incipient Ferroelectricity in Al‐Doped HfO2 Thin Films , 2012 .

[24]  S. Starschich,et al.  An extensive study of the influence of dopants on the ferroelectric properties of HfO2 , 2017 .

[25]  S. Glinšek,et al.  Combined effects of thickness, grain size and residual stress on the dielectric properties of Ba0.5Sr0.5TiO3 thin films , 2015 .

[26]  Dmitrii Negrov,et al.  Ultrathin Hf0.5Zr0.5O2 Ferroelectric Films on Si. , 2016, ACS applied materials & interfaces.

[27]  U. Böttger,et al.  Chemical Solution Deposition of Ferroelectric Hafnium Oxide for Future Lead Free Ferroelectric Devices , 2015 .

[28]  Di Zhang,et al.  Room-temperature multiferroic properties of sol-gel derived 0.5LaFeO3-Bi4Ti3O12 thin films with layered perovskite , 2017 .

[29]  Christoph Adelmann,et al.  Strontium doped hafnium oxide thin films: Wide process window for ferroelectric memories , 2013, 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[30]  Thomas Mikolajick,et al.  Electric field cycling behavior of ferroelectric hafnium oxide. , 2014, ACS applied materials & interfaces.

[31]  Q. Shen,et al.  Preparation of ferroelectric BaTi2O5 thin films on Pt(111)/Ti/SiO2/Si substrates by pulsed laser deposition , 2012 .

[32]  Xiaoping Zhou,et al.  Electrical Control of the Exchange Spring in Antiferromagnetic Metals , 2015, Advanced materials.

[33]  C. Nan,et al.  The Phase Characterization of BaTiO3-LaCaMnO3 Complete Solid Solution and Its Physical Properties , 2015 .

[34]  Huajun Sun,et al.  Effects of annealing temperature on structure and electrical properties of sol–gel derived 0.65PMN-0.35PT thin film , 2017 .

[35]  Thomas Mikolajick,et al.  Ferroelectric Hafnium Oxide Based Materials and Devices: Assessment of Current Status and Future Prospects , 2015 .

[36]  Ming Liu,et al.  Fatigue mechanism of yttrium-doped hafnium oxide ferroelectric thin films fabricated by pulsed laser deposition. , 2017, Physical chemistry chemical physics : PCCP.

[37]  Jacob L. Jones,et al.  Structure of 3 at.% and 9 at.% Si-doped HfO2 from combined refinement of X-ray and neutron diffraction patterns , 2015 .

[38]  Uwe Schroeder,et al.  Effect of Zr Content on the Wake-Up Effect in Hf1-xZrxO2 Films. , 2016, ACS applied materials & interfaces.

[39]  T. Ma,et al.  Why Is FE–HfO2 More Suitable Than PZT or SBT for Scaled Nonvolatile 1-T Memory Cell? A Retention Perspective , 2016, IEEE Electron Device Letters.

[40]  Xiaoying Liu,et al.  Thickness-dependent phase evolution and dielectric property of Hf0.5Zr0.5O2 thin films prepared with aqueous precursor , 2016, Journal of Sol-Gel Science and Technology.

[41]  Xin Wang,et al.  Interface Optimization and Electrical Properties of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 Thin Films Prepared by a Sol–Gel Process , 2014 .

[42]  M. Bahar,et al.  Synthesis and characterization of nanocrystalline barium strontium titanate powder by a modified sol-gel processing , 2016 .

[43]  T. Mihara,et al.  Perovskite crystallization of sol-gel processed (Pb, La0.06, Gd0.02)(Zr0.65, Ti0.35)O3 thin films: Dielectric, ferroelectric and optical properties , 2002 .

[44]  Christoph Adelmann,et al.  Stabilizing the ferroelectric phase in doped hafnium oxide , 2015 .

[45]  Lothar Frey,et al.  Ferroelectricity in Simple Binary ZrO2 and HfO2. , 2012, Nano letters.

[46]  S. Lhostis,et al.  Addition of yttrium into HfO2 films: Microstructure and electrical properties , 2009 .

[47]  C. Hwang,et al.  Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature , 2013 .

[48]  H. Yan,et al.  Low‐Temperature Magnetic and Dielectric Anomalies in Rare‐Earth‐Substituted BiFeO3 Ceramics , 2014 .

[49]  H. Funakubo,et al.  Contribution of oxygen vacancies to the ferroelectric behavior of Hf0.5Zr0.5O2 thin films , 2015 .

[50]  J. K. Dewhurst,et al.  Relative stability of ZrO 2 and HfO 2 structural phases , 1999 .

[51]  M. Okuyama,et al.  Preparation and characterisation of PZT films by RF-magnetron sputtering , 2011 .

[52]  Jianguo Zhu,et al.  Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. , 2015, Chemical reviews.

[53]  Jianguo Zhu,et al.  Great enhancement of polarization in the (Ba0.67Sr0.33TiO3/LaNiO3)n multilayer thin films , 2017 .

[54]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[55]  R. Katiyar,et al.  Ferroelectricity in Rare-Earth Modified Hafnia Thin Films Deposited by Sequential Pulsed Laser Deposition , 2015 .

[56]  D. Remiens,et al.  Structural, ferroelectric and dielectric properties of In2O3:Sn (ITO) on PbZr0.53Ti0.47O3 (PZT)/Pt and annealing effect , 2011 .

[57]  Yichun Zhou,et al.  Effect of LaNiO3 buffer layer on dielectric and tunable properties of Pb0.82La0.08Sr0.1Ti0.98O3 thin films on Pt/Ti/SiO2/Si substrates , 2014 .

[58]  A. Toriumi,et al.  Ferroelectricity of nondoped thin HfO2 films in TiN/HfO2/TiN stacks , 2016 .

[59]  Xihong Hao,et al.  Thickness-dependent electrocaloric effect of Pb0.82Ba0.08La0.10(Zr0.90Ti0.10)O3 antiferroelectric thick films , 2017 .

[60]  Uwe Schroeder,et al.  On the structural origins of ferroelectricity in HfO2 thin films , 2015 .

[61]  Jianguo Chen,et al.  Enhanced dielectric and ferroelectric properties of PZT thin films derived by an ethylene glycol modified sol–gel method , 2017, Journal of Sol-Gel Science and Technology.

[62]  C. Hwang,et al.  Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes , 2013 .

[63]  Thomas Mikolajick,et al.  Phase transitions in ferroelectric silicon doped hafnium oxide , 2011 .