Metal–organic interface and charge injection in organic electronic devices

Charge injection at the interface between metallic electrodes and organic semiconductors plays a crucial role in the performance of organic (opto-)electronic devices. This article discusses the current understanding of the formation of the metal–organic contact and the parameters which control the injection current. Organic semiconductors differ significantly from their inorganic counterparts, primarily because they are amorphous van der Waals solids. As a result the electronic states are highly localized, and charge transport is by site-to-site hopping. Organics can also form clean interfaces with many metals, free of interface states in the gap. Nevertheless, there is generally found to be a significant vacuum level offset, the origins of which are not yet fully understood. Organic semiconductors are frequently free of donor and acceptor dopants, and as a result the depletion depth is larger than the organic layer thickness. Thus the Fermi level in the organic and the charge injection barriers depend mo...

[1]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[2]  L. Onsager Initial Recombination of Ions , 1938 .

[3]  P. R. Emtage,et al.  Richardson-Schottky Effect in Insulators , 1966 .

[4]  Kelly J. Gaffney,et al.  Evolution of a two dimensional band structure at a self-assembling interface , 2002 .

[5]  K. W. Hipps,et al.  Orbital Mediated Tunneling in Vanadyl Phthalocyanine Observed in both Tunnel Diode and STM Environments , 2000 .

[6]  M. Knupfer,et al.  Energy level alignment at organic/metal interfaces: Dipole and ionization potential , 2002 .

[7]  William R. Salaneck,et al.  An experimental study of poly(9,9-dioctyl-fluorene) and its interfaces with Li, Al, and LiF , 2000 .

[8]  D. Milliron,et al.  Organic semiconductor interfaces: electronic structure and transport properties , 2000 .

[9]  J. Fitzgerald,et al.  Effect of polar additives on charge transport in a molecularly doped polymer: Survey of various additives , 1995 .

[10]  N. Karl,et al.  Electron and Hole Mobilities in High Purity Anthracene Single Crystals , 2001 .

[11]  Ian D. Parker,et al.  Carrier tunneling and device characteristics in polymer light‐emitting diodes , 1994 .

[12]  Moses,et al.  Picosecond transient photoconductivity in poly(p-phenylenevinylene). , 1994, Physical review. B, Condensed matter.

[13]  J. Ferraris,et al.  The Schottky energy barrier dependence of charge injection in organic light-emitting diodes , 1998 .

[14]  V. M. Kenkre,et al.  Energetic Disorder, Spatial Correlations, and the High-Field Mobility of Injected Charge Carriers in Organic Solids , 2000 .

[15]  M. Abkowitz,et al.  Direct evaluation of contact injection efficiency into small molecule based transport layers: Influence of extrinsic factors , 1998 .

[16]  Ananth Dodabalapur,et al.  Organic light emitting diodes , 1997 .

[17]  E. Itoh,et al.  SPATIAL DISTRIBUTION OF CHARGES IN ULTRATHIN POLYIMIDE LANGMUIR–BLODGETT FILMS , 1994 .

[18]  Shui-Tong Lee,et al.  Energy level alignment at Alq/metal interfaces , 1998 .

[19]  Martin A. Abkowitz,et al.  Evolution in the charge injection efficiency of evaporated Au contacts on a molecularly doped polymer , 1998 .

[20]  Stephen R. Forrest,et al.  Interface-limited injection in amorphous organic semiconductors , 2001 .

[21]  T. Tani,et al.  Electronic structures of organic-inorganic interfaces studied by UV photoemission , 1996 .

[22]  Dunlap,et al.  Charge-Dipole Model for the Universal Field Dependence of Mobilities in Molecularly Doped Polymers. , 1996, Physical review letters.

[23]  M. Knupfer,et al.  Strong chemical interaction between indium tin oxide and phthalocyanines , 2002 .

[24]  Junji Kido,et al.  Organic Electroluminescent Devices Having Self-Doped Cathode Interface Layer , 2002 .

[25]  Jun Endo,et al.  Organic Electroluminescent Devices Having Metal Complexes as Cathode Interface Layer , 2002 .

[26]  Liping Ma,et al.  Organic electrical bistable devices and rewritable memory cells , 2002 .

[27]  Gerwin H. Gelinck,et al.  Active‐Matrix Displays Driven by Solution‐Processed Polymeric Transistors , 2002 .

[28]  H. Riel,et al.  Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation , 1999 .

[29]  Daniel F. Blossey,et al.  One-dimensional Onsager theory for carrier injection in metal-insulator systems , 1974 .

[30]  Jun Gao,et al.  POLYMER LIGHT-EMITTING ELECTROCHEMICAL CELLS WITH FROZEN P-I-N JUNCTION , 1997 .

[31]  George G. Malliaras,et al.  Charge injection and recombination at the metal–organic interface , 1999 .

[32]  A. Twarowski Energy level bending at molecular crystal surfaces , 1982 .

[33]  William R. Salaneck,et al.  The chemical and electronic structure of the interface between aluminum and polythiophene semiconductors , 1993 .

[34]  Yongli Gao,et al.  Direct observation of Fermi-level pinning in Cs-doped CuPc film , 2001 .

[35]  B. Hsieh,et al.  Energy level bending and alignment at the interface between Ca and a phenylene vinylene oligomer , 1996 .

[36]  C.W. Tang,et al.  Organic Electroluminescent Devices , 1995, IEEE/LEOS 1995 Digest of the LEOS Summer Topical Meetings. Flat Panel Display Technology.

[37]  A J Heeger,et al.  Polymer Light-Emitting Electrochemical Cells , 1995, Science.

[38]  Jun Endo,et al.  Organic Electroluminescent Devices with a Vacuum-Deposited Lewis-Acid-Doped Hole-Injecting Layer , 2002 .

[39]  H. Bässler,et al.  CURRENT INJECTION FROM A METAL TO A DISORDERED HOPPING SYSTEM. II. COMPARISON BETWEEN ANALYTIC THEORY AND SIMULATION , 1999 .

[40]  Ian H. Campbell,et al.  Schottky energy barriers and charge injection in metal/Alq/metal structures , 1999 .

[41]  Vladimir Arkhipov,et al.  Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation , 1999 .

[42]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[43]  N. Mott,et al.  Polarons in crystalline and non-crystalline materials , 2001 .

[44]  W. Schottky Halbleitertheorie der Sperrschicht , 1938 .

[45]  William R. Salaneck,et al.  Electronic structure of hybrid interfaces of poly(9,9-dioctylfluorene) , 2000 .

[46]  Saul Dushman Electron Emission from Metals as a Function of Temperature , 1923 .

[47]  A. Heeger,et al.  A.c. impedance of frozen junction polymer light-emitting electrochemical cells , 1998 .

[48]  D. Emin Phonon-assisted transition rates I. Optical-phonon-assisted hopping in solids , 1975 .

[49]  Smith,et al.  Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. , 1996, Physical review. B, Condensed matter.

[50]  N. Sato,et al.  Unoccupied electronic states of 3d-transition metal phthalocyanines (MPc: M=Mn, Fe, Co, Ni, Cu and Zn) studied by inverse photoemission spectroscopy , 2001 .

[51]  Chung-Chih Wu,et al.  Efficient organic electroluminescent devices using single-layer doped polymer thin films with bipolar carrier transport abilities , 1997 .

[52]  H. Sirringhaus,et al.  Electron-hole interaction energy in the organic molecular semiconductor PTCDA , 1997 .

[53]  A. Kahn,et al.  Photoemission spectroscopy investigation of magnesium–Alq3 interfaces , 1998 .

[54]  Nevill Mott,et al.  Electrons in disordered structures , 2001 .

[55]  E. Conwell,et al.  Field-dependent thermal injection into a disordered molecular insulator , 1996 .

[56]  C. R. Crowell,et al.  Current transport in metal-semiconductor barriers , 1966 .

[57]  Y. Ouchi,et al.  Examination of band bending at buckminsterfullerene (C60)/metal interfaces by the Kelvin probe method , 2002 .

[58]  W. Warta,et al.  Hot holes in naphthalene: High, electric-field-dependent mobilities. , 1985, Physical review. B, Condensed matter.

[59]  Vladimir Arkhipov,et al.  Charge injection into light-emitting diodes: Theory and experiment , 1998 .

[60]  J. Brédas,et al.  Occupied and unoccupied electronic levels in organic π-conjugated molecules: comparison between experiment and theory , 2000 .

[61]  C. Cramer,et al.  The Nature of Electronic Contact in Self-Assembled Monolayers for Molecular Electronics: Evidence for Strong Coupling , 1999 .

[62]  William R. Salaneck,et al.  The electronic structure of polymer-metal interfaces studied by ultraviolet photoelectron spectroscopy , 2001 .

[63]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[64]  Yongsup Park,et al.  Gap-State Induced Photoluminescence Quenching of Phenylene Vinylene Oligomer and Its Recovery by Oxidation , 1997 .

[65]  Franco Cacialli,et al.  Molecular-scale interface engineering for polymer light-emitting diodes , 2000, Nature.

[66]  M. W. Klein,et al.  Mobility-dependent charge injection into an organic semiconductor. , 2001, Physical review letters.

[67]  W. Schottky,et al.  Vereinfachte und erweiterte Theorie der Randschicht-gleichrichter , 1942 .

[68]  Martin Wolf,et al.  Electronic states of the C6H6/Cu{111} system: Energetics, femtosecond dynamics, and adsorption morphology , 1998 .

[69]  L. Zuppiroli,et al.  Derivatized electrodes in the construction of organic light emitting diodes , 1997 .

[70]  Yongli Gao,et al.  Investigation of the interface formation between calcium and tris-(8-hydroxy quinoline) aluminum , 1998 .

[71]  Antoine Kahn,et al.  Charge-separation energy in films of π-conjugated organic molecules , 2000 .

[72]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .

[73]  Smith,et al.  Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures. , 1996, Physical review letters.

[74]  K. Leo,et al.  Fermi level determination in organic thin films by the Kelvin probe method , 1996 .

[75]  O. Richardson LXVII. The distribution of the molecules of gas in a field of force, with applications to the theory of electrons , 1914 .

[76]  Yongli Gao SURFACE ANALYTICAL STUDIES OF INTERFACE FORMATION IN ORGANIC LIGHT-EMITTING DEVICES , 1999 .

[77]  Bryan E. Kohler,et al.  Measuring internal electric fields with atomic resolution , 1995 .

[78]  Wei,et al.  Optical probes of excited states in poly(p-phenylenevinylene). , 1994, Physical review letters.

[79]  Lord Kelvin,et al.  V. Contact electricity of metals , 1898 .

[80]  H. Bässler Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study , 1993 .

[81]  R. Silbey,et al.  Almost temperature independent charge carrier mobilities in liquid crystals , 2000 .

[82]  K. Leo,et al.  Tunneling spectroscopy study of 3,4,9,10-perylenetetracarboxylic dianhydride on Au(100) , 2001 .

[83]  Paul Seidler,et al.  Direct Determination of the Exciton Binding Energy of Conjugated Polymers Using a Scanning Tunneling Microscope , 1998 .

[84]  N. Sato,et al.  Unoccupied electronic structure in organic thin films studied by inverse photoemission spectroscopy , 1999 .

[85]  P. Blom,et al.  Temperature dependence of the charge injection in poly-dialkoxy-p-phenylene vinylene , 2001 .