Endothelial dysfunction in atherosclerotic mice: improved relaxation by combined supplementation with L‐arginine‐tetrahydrobiopterin and enhanced vasoconstriction by endothelin

[1]  P. Thorén,et al.  Enhanced phenylephrine‐induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of KCa channels: relation to Kv channels and nitric oxide , 1999, British journal of pharmacology.

[2]  P. Gambert,et al.  Impairment of endothelium-dependent arterial relaxation by high-fat feeding in ApoE-deficient mice: toward normalization by human ApoA-I expression. , 1999, Circulation.

[3]  T. Shimokama,et al.  Increased immunoreactivity of endothelin-1 and endothelin B receptor in human atherosclerotic lesions. A possible role in atherogenesis. , 1999, Atherosclerosis.

[4]  P. Thorén,et al.  Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Chowienczyk,et al.  Effects of vitamin C and of a cell permeable superoxide dismutase mimetic on acute lipoprotein induced endothelial dysfunction in rabbit aortic rings , 1999, British journal of pharmacology.

[6]  E. Werner,et al.  Tetrahydrobiopterin, Cytokines, and Nitric Oxide Synthesis 1 , 1998, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[7]  T. Lüscher,et al.  Endothelin ETA receptor blockade restores NO-mediated endothelial function and inhibits atherosclerosis in apolipoprotein E-deficient mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T. Lüscher,et al.  Tetrahydrobiopterin and endothelial function. , 1998, European heart journal.

[9]  E. Werner,et al.  Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats. , 1998, The Journal of clinical investigation.

[10]  T. Lüscher,et al.  Atherosclerosis and the two faces of endothelial nitric oxide synthase. , 1998, Circulation.

[11]  M. Marletta,et al.  Catalysis by nitric oxide synthase. , 1998, Current opinion in chemical biology.

[12]  R. Michler,et al.  L-arginine prevents xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice. , 1997, Circulation.

[13]  M. Kowala The role of endothelin in the pathogenesis of atherosclerosis. , 1997, Advances in pharmacology.

[14]  J. Kastelein,et al.  Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. , 1997, The Journal of clinical investigation.

[15]  G. Pieper Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin. , 1997, Journal of cardiovascular pharmacology.

[16]  H. Drexler,et al.  Endothelial dysfunction: clinical implications. , 1997, Progress in cardiovascular diseases.

[17]  J S Beckman,et al.  Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. , 1996, The American journal of physiology.

[18]  C. Tiefenbacher,et al.  Restoration of endothelium-dependent vasodilation after reperfusion injury by tetrahydrobiopterin. , 1996, Circulation.

[19]  T. Lüscher,et al.  The pathogenesis of cardiovascular disease: role of the endothelium as a target and mediator. , 1995, Atherosclerosis.

[20]  F. Cosentino,et al.  Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. , 1995, Circulation.

[21]  R. Ross,et al.  ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. , 1994, Arteriosclerosis and thrombosis : a journal of vascular biology.

[22]  N. Maeda,et al.  Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. , 1992, Science.

[23]  E. Rubin,et al.  Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells , 1992, Cell.

[24]  J. Cooke,et al.  L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. , 1992, The Journal of clinical investigation.

[25]  S. Marklund,et al.  Vascular bound recombinant extracellular superoxide dismutase type C protects against the detrimental effects of superoxide radicals on endothelium-dependent arterial relaxation. , 1992, Circulation research.

[26]  H. Drexler,et al.  Endothelial Dysfunction of the Coronary Microvasculature Is Associated With Impaired Coronary Blood Flow Regulation in Patients With Early Atherosclerosis , 1991, Circulation.

[27]  S. Moncada,et al.  Nitric oxide: physiology, pathophysiology, and pharmacology. , 1991, Pharmacological reviews.

[28]  R. Virmani,et al.  Vascular reactivity during the progression of atherosclerotic plaque. A study in Watanabe heritable hyperlipidemic rabbits. , 1990, Circulation research.

[29]  S. Moncada,et al.  Vascular endothelial cells synthesize nitric oxide from L-arginine , 1988, Nature.

[30]  Sadao Kimura,et al.  A novel potent vasoconstrictor peptide produced by vascular endothelial cells , 1988, Nature.

[31]  U. Förstermann,et al.  Selective Attenuation of Endothelium‐Mediated Vasodilation in Atherosclerotic Human Coronary Arteries , 1988, Circulation research.

[32]  P. D. Henry,et al.  Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5'-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. , 1987, The Journal of clinical investigation.

[33]  D. Harrison,et al.  Atherosclerosis Impairs Endothelium‐Dependent Vascular Relaxation to Acetylcholine and Thrombin in Primates , 1986, Circulation research.