Continuous Flow Sodiation of Substituted Acrylonitriles, Alkenyl Sulfides and Acrylates

Abstract The sodiation of substituted acrylonitriles and alkenyl sulfides in a continuous flow set‐up using NaDA (sodium diisopropylamide) in EtNMe2 or NaTMP (sodium 2,2,6,6‐tetramethylpiperidide)⋅TMEDA in n‐hexane provides sodiated acrylonitriles and alkenyl sulfides, which are subsequently trapped in batch with various electrophiles such as aldehydes, ketones, disulfides and allylic bromides affording functionalized acrylonitriles and alkenyl sulfides. This flow‐procedure was successfully extended to other acrylates by using Barbier‐type conditions.

[1]  P. Knochel,et al.  Continuous Flow Preparation of (Hetero)benzylic Lithiums via Iodine-Lithium Exchange Reaction under Barbier Conditions. , 2020, Organic letters.

[2]  P. Knochel,et al.  Herstellung funktioneller Aryl‐, Heteroaryl‐ und benzylischer Organokalium‐Spezies mittels Kaliumdiisopropylamid im kontinuierlichen Durchfluss , 2020 .

[3]  D. B. Collum,et al.  Structure, Reactivity, and Synthetic Applications of Sodium Diisopropylamide. , 2020, Synthesis.

[4]  P. Knochel,et al.  Preparation of Functionalized Aryl, Heteroaryl, and Benzylic Potassium Organometallics Using Potassium Diisopropylamide in Continuous Flow , 2020, Angewandte Chemie.

[5]  R. Luisi,et al.  Flow Technology for Genesis and Use of (Highly) Reactive Organometallic Reagents. , 2020, Chemistry.

[6]  J. Wong,et al.  Batch Versus Flow Lithiation-Substitution of 1,3,4-Oxadiazoles: Exploitation of Unstable Intermediates Using Flow Chemistry. , 2019, Chemistry.

[7]  K. Takai,et al.  Lithium‐Free Synthesis of Sodium 2,2,6,6‐Tetramethylpiperidide and Its Synthetic Applications , 2019, Advanced Synthesis & Catalysis.

[8]  K. Takai,et al.  Organosodium compounds for catalytic cross-coupling , 2019, Nature Catalysis.

[9]  D. Armstrong,et al.  Alkali Metal Effects in Trans-Metal-Trapping (TMT): Comparing LiTMP with NaTMP in Cooperative MTMP/Ga(CH2SiMe3)3 Metalation Reactions , 2019, Synthesis.

[10]  P. Knochel,et al.  Milde Chlorhomologisierung von Estern durch Chloracetat‐Claisen‐Reaktion unter kontinuierlichen Durchflussbedingungen , 2018, Angewandte Chemie.

[11]  B. Martin,et al.  Mild Homologation of Esters through Continuous Flow Chloroacetate Claisen Reactions. , 2018, Angewandte Chemie.

[12]  D. Witt,et al.  Convenient and Efficient Diastereoselective Preparation of Functionalized Z -Alkenyl Sulfides , 2018, European Journal of Organic Chemistry.

[13]  P. Knochel,et al.  Natriierung von Aromaten und Heteroaromaten im kontinuierlichen Durchfluss , 2018, Angewandte Chemie.

[14]  P. Knochel,et al.  Sodiation of Arenes and Heteroarenes in Continuous Flow. , 2018, Angewandte Chemie.

[15]  Nicholas J. Rogus,et al.  Development of an Organometallic Flow Chemistry Reaction at Pilot-Plant Scale for the Manufacture of Verubecestat , 2018 .

[16]  D. B. Collum,et al.  Sodium Diisopropylamide in Tetrahydrofuran: Selectivities, Rates, and Mechanisms of Arene Metalations. , 2017, Journal of the American Chemical Society.

[17]  Timothy F Jamison,et al.  The assembly and use of continuous flow systems for chemical synthesis , 2017, Nature Protocols.

[18]  D. B. Collum,et al.  Sodium Diisopropylamide in Tetrahydrofuran: Selectivities, Rates, and Mechanisms of Alkene Isomerizations and Diene Metalations. , 2017, Journal of the American Chemical Society.

[19]  C. Kappe,et al.  Forbidden Chemistries — Paths to a Sustainable Future Engaging Continuous Processing , 2017, Journal of Flow Chemistry.

[20]  H. Zipse,et al.  Barbier Continuous Flow Preparation and Reactions of Carbamoyllithiums for Nucleophilic Amidation. , 2017, Chemistry.

[21]  S. Chiba,et al.  Amide-Directed C-H Sodiation by a Sodium Hydride/Iodide Composite. , 2017, Angewandte Chemie.

[22]  P. Seeberger,et al.  The Hitchhiker's Guide to Flow Chemistry ∥. , 2017, Chemical reviews.

[23]  D. B. Collum,et al.  Sodium Diisopropylamide: Aggregation, Solvation, and Stability. , 2017, Journal of the American Chemical Society.

[24]  D. B. Collum,et al.  Sodium Diisopropylamide in N,N-Dimethylethylamine: Reactivity, Selectivity, and Synthetic Utility. , 2016, The Journal of organic chemistry.

[25]  M. McGuire,et al.  Handling Hazards Using Continuous Flow Chemistry: Synthesis of N1-Aryl-[1,2,3]-triazoles from Anilines via Telescoped Three-Step Diazotization, Azidodediazotization, and [3 + 2] Dipolar Cycloaddition Processes , 2016 .

[26]  P. Knochel,et al.  Continuous Flow Magnesiation or Zincation of Acrylonitriles, Acrylates, and Nitroolefins. Application to the Synthesis of Butenolides. , 2016, Organic letters.

[27]  Heejin Kim,et al.  Integrated one-flow synthesis of heterocyclic thioquinazolinones through serial microreactions with two organolithium intermediates. , 2015, Angewandte Chemie.

[28]  P. Knochel,et al.  Preparation of Functionalized Lithium, Magnesium, Aluminum, Zinc, Manganese­, and Indium Organometallics from Functionalized Organic Halides , 2014 .

[29]  Robert E. Mulvey,et al.  Nützliche Alkalimetallamide für die Synthese: Lithium‐, Natrium‐ und Kaliumhexamethyldisilazide, ‐diisopropylamide und ‐tetramethylpiperidide , 2013 .

[30]  R. Mulvey,et al.  Synthetically important alkali-metal utility amides: lithium, sodium, and potassium hexamethyldisilazides, diisopropylamides, and tetramethylpiperidides. , 2013, Angewandte Chemie.

[31]  S. Ley,et al.  Continuous Preparation of Arylmagnesium Reagents in Flow with Inline IR Monitoring , 2012 .

[32]  D. Armstrong,et al.  Developing a Hetero-Alkali-Metal Chemistry of 2,2,6,6-Tetramethyl-piperidide (TMP): Stoichiometric and Structural Diversity within a Series of Lithium/Sodium, Lithium/Potassium and Sodium/Potassium TMP Compounds , 2011, Chemistry.

[33]  Jun-ichi Yoshida,et al.  A flow-microreactor approach to protecting-group-free synthesis using organolithium compounds. , 2011, Nature communications.

[34]  F. Ullah,et al.  Scaling out by microwave-assisted, continuous flow organic synthesis (MACOS): multi-gram synthesis of bromo- and fluoro-benzofused sultams benzthiaoxazepine-1,1-dioxides. , 2010, Chemistry.

[35]  D. Seyferth Alkyl and Aryl Derivatives of the Alkali Metals: Strong Bases and Reactive Nucleophiles. 2. Wilhelm Schlenk’s Organoalkali-Metal Chemistry. The Metal Displacement and the Transmetalation Reactions. Metalation of Weakly Acidic Hydrocarbons. Superbases , 2009 .

[36]  A. Flynn,et al.  Stereocontrolled synthesis of tetrasubstituted olefins. , 2007, Chemical reviews.

[37]  F. Fleming,et al.  Alkenenitriles: conjugate additions of alkyl iodides with a silica-supported zinc-copper matrix in water. , 2007, The Journal of organic chemistry.

[38]  D. Seyferth Alkyl and Aryl Derivatives of the Alkali Metals: Useful Synthetic Reagents as Strong Bases and Potent Nucleophiles. 1. Conversion of Organic Halides to Organoalkali-Metal Compounds , 2006 .

[39]  V. Snieckus,et al.  Anionic O → α- and β-Vinyl Carbamoyl Translocation of 2-(O-Carbamoyl) Stilbenes† , 2004 .

[40]  F. Fleming,et al.  Alkynenitriles: stereoselective chelation controlled conjugate addition - alkylations , 2003 .

[41]  F. Fleming,et al.  Unsaturated nitriles: conjugate additions of carbon nucleophiles to a recalcitrant class of acceptors. , 2003, Chemical reviews.

[42]  F. Fleming,et al.  γ-hydroxy-α,β-alkenenitriles: Chelation-controlled conjugate additions , 2002 .

[43]  M. Lappert,et al.  Synthesis and crystal structure of trimeric sodium 2,2,6,6- tetramethylpiperidide (NaTMP) , 1999 .

[44]  D. Harrowven,et al.  A michael initiated - condensation - elimination sequence for the stereoselective synthesis of maleate derivatives. , 1996 .

[45]  D. Harrowven,et al.  Diethyl lithiomaleate: Preparation and use in synthesis , 1994 .

[46]  V. Snieckus,et al.  .alpha.-Metalated tertiary enol carbamates. New acyl anion equivalents , 1990 .

[47]  L. Pasquato,et al.  The role of sulfur functionalities in activating and directing olefins in cycloaddition reactions , 1989 .

[48]  J. Davies,et al.  Synthesis and beta-lactamase inhibitory activity of 9-(2-amidoethenylthio)-9-deoxy derivatives of clavulanic acid. , 1988, The Journal of antibiotics.

[49]  R. Hunter,et al.  A versatile vinyl sulphide synthesis using benzenesulphenyl chloride , 1987 .

[50]  T. Morris,et al.  Oxetane synthesis: methyl vinyl sulphides as new traps of excited benzophenone in a stereoselective and regiospecific paterno–Büchi reaction , 1987 .

[51]  Saleem Ahmad,et al.  The chemistry of alkyl thiosulfinate esters. 9. Antithrombotic organosulfur compounds from garlic: structural, mechanistic, and synthetic studies , 1986 .

[52]  B. Trost,et al.  Enol thioethers as enol substitutes. An alkylation sequence , 1983 .

[53]  R. Hirsenkorn,et al.  Direct lithiation of functionally substituted acrylic acid derivatives , 1983 .

[54]  R. Knorr,et al.  2‐Methyl‐1‐phenyl‐1‐propenyllithium. Ein katalytisch ummetallierbares Vinyllithiumderivat , 1981 .

[55]  B. Feit,et al.  Vinyl carbanions derived from cis-cinnamonitrile-reactions with electrophiles and configurational stability , 1981 .

[56]  Jörg Talbiersky,et al.  Generation of functionally substituted vinyllithium compounds - results and calculations☆ , 1979 .

[57]  R. A. Benkeser,et al.  Metalations With Organosodium Compounds , 1957 .

[58]  A. Morton,et al.  PYROLYSIS OF AMYLSODIUM AND THE ISOMERIZATION OF ALKENES BY ORGANOSODIUM REAGENTS , 1955 .

[59]  V. B. Baker,et al.  Polymerization. XII. The Metalation of Olefins and Dienes and their Use in Alfin Polymerization of Butadiene1 , 1950 .