Mechanical perspective on chemotaxis

[1]  H. Gómez,et al.  Three-dimensional simulation of obstacle-mediated chemotaxis , 2018, Biomechanics and Modeling in Mechanobiology.

[2]  Luigi Preziosi,et al.  Plasticity of Cell Migration In Vivo and In Silico. , 2016, Annual review of cell and developmental biology.

[3]  D. Ambrosi,et al.  Mechanics and polarity in cell motility , 2016, 1605.09713.

[4]  John A. Mackenzie,et al.  A computational method for the coupled solution of reaction–diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis , 2016, J. Comput. Phys..

[5]  Neil O Carragher,et al.  Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches , 2016, Cell systems.

[6]  Jian Lu,et al.  A dynamic model of chemoattractant-induced cell migration. , 2015, Biophysical journal.

[7]  L. Truskinovsky,et al.  Mechanics of motility initiation and motility arrest in crawling cells , 2015, 1501.07185.

[8]  A. Vorotnikov,et al.  Chemotactic signaling in mesenchymal cells compared to amoeboid cells , 2014, Genes & diseases.

[9]  Alex Groisman,et al.  Cellular memory in eukaryotic chemotaxis , 2014, Proceedings of the National Academy of Sciences.

[10]  M. Iijima,et al.  Rho GTPases orient directional sensing in chemotaxis , 2013, Proceedings of the National Academy of Sciences.

[11]  Gaudenz Danuser,et al.  Mathematical modeling of eukaryotic cell migration: insights beyond experiments. , 2013, Annual review of cell and developmental biology.

[12]  L. Truskinovsky,et al.  Contraction-driven cell motility. , 2013, Physical review letters.

[13]  L S Kimpton,et al.  Multiple travelling-wave solutions in a minimal model for cell motility. , 2013, Mathematical medicine and biology : a journal of the IMA.

[14]  Pablo A. Iglesias,et al.  Interaction of Motility, Directional Sensing, and Polarity Modules Recreates the Behaviors of Chemotaxing Cells , 2013, PLoS Comput. Biol..

[15]  L. Truskinovsky,et al.  Asymmetry between pushing and pulling for crawling cells. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Alba Diz-Muñoz,et al.  Use the force: membrane tension as an organizer of cell shape and motility. , 2013, Trends in cell biology.

[17]  L. Edelstein-Keshet,et al.  Pattern formation of Rho GTPases in single cell wound healing , 2013, Molecular biology of the cell.

[18]  C. M. Elliott,et al.  Modelling cell motility and chemotaxis with evolving surface finite elements , 2012, Journal of The Royal Society Interface.

[19]  Falko Ziebert,et al.  Model for self-polarization and motility of keratocyte fragments , 2012, Journal of The Royal Society Interface.

[20]  Wouter-Jan Rappel,et al.  Coupling actin flow, adhesion, and morphology in a computational cell motility model , 2012, Proceedings of the National Academy of Sciences.

[21]  Leah Edelstein-Keshet,et al.  How Cells Integrate Complex Stimuli: The Effect of Feedback from Phosphoinositides and Cell Shape on Cell Polarization and Motility , 2012, PLoS Comput. Biol..

[22]  Taiji Adachi,et al.  Multiscale modeling and mechanics of filamentous actin cytoskeleton , 2012, Biomechanics and modeling in mechanobiology.

[23]  F. Rico,et al.  Direct measurement of the mechanical properties of lipid phases in supported bilayers. , 2012, Biophysical journal.

[24]  K. Kruse,et al.  Cell motility resulting from spontaneous polymerization waves. , 2011, Physical review letters.

[25]  A. Vorotnikov,et al.  Chemotaxis: Movement, direction, control , 2011, Biochemistry (Moscow).

[26]  Jonathon Howard,et al.  Turing's next steps: the mechanochemical basis of morphogenesis , 2011, Nature Reviews Molecular Cell Biology.

[27]  Matthew P. Neilson,et al.  Chemotaxis: A Feedback-Based Computational Model Robustly Predicts Multiple Aspects of Real Cell Behaviour , 2011, PLoS biology.

[28]  Julie A. Theriot,et al.  An Adhesion-Dependent Switch between Mechanisms That Determine Motile Cell Shape , 2011, PLoS biology.

[29]  Alexandra Jilkine,et al.  A Comparison of Mathematical Models for Polarization of Single Eukaryotic Cells in Response to Guided Cues , 2011, PLoS Comput. Biol..

[30]  Gaudenz Danuser,et al.  Myosin II contributes to cell-scale actin network treadmilling via network disassembly , 2010, Nature.

[31]  Chuan-Hsiang Huang,et al.  Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. , 2010, Annual review of biophysics.

[32]  Jean-Jacques Meister,et al.  Force transmission in migrating cells , 2010, The Journal of cell biology.

[33]  Ken Jacobson,et al.  Actin-myosin viscoelastic flow in the keratocyte lamellipod. , 2009, Biophysical journal.

[34]  Alexandra Jilkine,et al.  Wave-pinning and cell polarity from a bistable reaction-diffusion system. , 2008, Biophysical journal.

[35]  Liang Li,et al.  Persistent Cell Motion in the Absence of External Signals: A Search Strategy for Eukaryotic Cells , 2008, PloS one.

[36]  Pablo A Iglesias,et al.  Navigating through models of chemotaxis. , 2008, Current opinion in cell biology.

[37]  Frank Jülicher,et al.  Hydrodynamic theory for multi-component active polar gels , 2007 .

[38]  H. Higgs,et al.  The many faces of actin: matching assembly factors with cellular structures , 2007, Nature Cell Biology.

[39]  Albrecht Ott,et al.  Rheological properties of the Eukaryotic cell cytoskeleton , 2007 .

[40]  Frank Jülicher,et al.  Active behavior of the Cytoskeleton , 2007 .

[41]  Revathi Ananthakrishnan,et al.  The Forces Behind Cell Movement , 2007, International journal of biological sciences.

[42]  Alexandra Jilkine,et al.  Mathematical Model for Spatial Segregation of the Rho-Family GTPases Based on Inhibitory Crosstalk , 2007, Bulletin of mathematical biology.

[43]  A. Mogilner,et al.  Transport of a 1D viscoelastic actin-myosin strip of gel as a model of a crawling cell. , 2006, Physica A.

[44]  R. Firtel,et al.  Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. , 2006, European journal of cell biology.

[45]  Shuji Ishihara,et al.  A Mass Conserved Reaction–Diffusion System Captures Properties of Cell Polarity , 2006, PLoS Comput. Biol..

[46]  Jerome T. Mettetal,et al.  Cellular asymmetry and individuality in directional sensing. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[47]  C. Waterman-Storer,et al.  Spatiotemporal Feedback between Actomyosin and Focal-Adhesion Systems Optimizes Rapid Cell Migration , 2006, Cell.

[48]  W. Rappel,et al.  Directional sensing in eukaryotic chemotaxis: a balanced inactivation model. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Joanny,et al.  Contractility and retrograde flow in lamellipodium motion , 2006, Physical biology.

[50]  W. Rappel,et al.  Dictyostelium discoideum chemotaxis: threshold for directed motion. , 2006, European journal of cell biology.

[51]  A. Coniglio,et al.  Diffusion-limited phase separation in eukaryotic chemotaxis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Y. Sawada,et al.  Direct mechanical force measurements during the migration of Dictyostelium slugs using flexible substrata. , 2005, Biophysical journal.

[53]  Shin Ishii,et al.  A molecular model for axon guidance based on cross talk between rho GTPases. , 2005, Biophysical journal.

[54]  Micah Dembo,et al.  The dynamics and mechanics of endothelial cell spreading. , 2005, Biophysical journal.

[55]  Gaudenz Danuser,et al.  Tracking retrograde flow in keratocytes: news from the front. , 2005, Molecular biology of the cell.

[56]  Xingyu Jiang,et al.  Directing cell migration with asymmetric micropatterns. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Yiider Tseng,et al.  Intracellular mechanics of migrating fibroblasts. , 2004, Molecular biology of the cell.

[58]  G. Danuser,et al.  Two Distinct Actin Networks Drive the Protrusion of Migrating Cells , 2004, Science.

[59]  J. Joanny,et al.  Generic theory of active polar gels: a paradigm for cytoskeletal dynamics , 2004, The European physical journal. E, Soft matter.

[60]  P. Iglesias,et al.  Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Marten Postma,et al.  Chemotaxis: signalling modules join hands at front and tail , 2004, EMBO reports.

[62]  G. Borisy,et al.  Cell Migration: Integrating Signals from Front to Back , 2003, Science.

[63]  J. Ferrell,et al.  A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision , 2003, Nature.

[64]  P. Devreotes,et al.  Eukaryotic Chemotaxis: Distinctions between Directional Sensing and Polarization* , 2003, Journal of Biological Chemistry.

[65]  Marc Herant,et al.  The mechanics of neutrophils: synthetic modeling of three experiments. , 2003, Biophysical journal.

[66]  Benjamin Geiger,et al.  How do microtubules guide migrating cells? , 2002, Nature Reviews Molecular Cell Biology.

[67]  P. Devreotes,et al.  Temporal and spatial regulation of chemotaxis. , 2002, Developmental cell.

[68]  Pablo A. Iglesias,et al.  Modeling the Cell's Guidance System , 2002, Science's STKE.

[69]  Leah Edelstein-Keshet,et al.  Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. , 2002, Biophysical journal.

[70]  P. V. van Haastert,et al.  A diffusion-translocation model for gradient sensing by chemotactic cells. , 2001, Biophysical journal.

[71]  A. Levchenko,et al.  Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. , 2001, Biophysical journal.

[72]  D. Lauffenburger,et al.  A Mathematical Model for Chemoattractant Gradient Sensing Based on Receptor-Regulated Membrane Phospholipid Signaling Dynamics , 2001, Annals of Biomedical Engineering.

[73]  H. Meinhardt,et al.  Pattern formation by local self-activation and lateral inhibition. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[74]  J W Sedat,et al.  Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. , 2000, Science.

[75]  C. Parent,et al.  A cell's sense of direction. , 1999, Science.

[76]  W Alt,et al.  Cytoplasm dynamics and cell motion: two-phase flow models. , 1999, Mathematical biosciences.

[77]  Gary G. Borisy,et al.  Self-polarization and directional motility of cytoplasm , 1999, Current Biology.

[78]  A. Hall,et al.  Rho GTPases* , 1998, The Journal of Biological Chemistry.

[79]  John G. Collard,et al.  The Guanine Nucleotide Exchange Factor Tiam1 Affects Neuronal Morphology; Opposing Roles for the Small GTPases Rac and Rho , 1997, The Journal of cell biology.

[80]  Gary G. Borisy,et al.  Analysis of the Actin–Myosin II System in Fish Epidermal Keratocytes: Mechanism of Cell Body Translocation , 1997, The Journal of cell biology.

[81]  D A Lauffenburger,et al.  Physical modulation of intracellular signaling processes by locational regulation. , 1997, Biophysical journal.

[82]  Sean P. Palecek,et al.  Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness , 1997, Nature.

[83]  G. Oster,et al.  Cell motility driven by actin polymerization. , 1996, Biophysical journal.

[84]  A. Huttenlocher,et al.  Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity , 1996, The Journal of cell biology.

[85]  R. Tranquillo,et al.  BASIC MORPHOGENETIC SYSTEM MODELING SHAPE CHANGES OF MIGRATING CELLS: HOW TO EXPLAIN FLUCTUATING LAMELLIPODIAL DYNAMICS , 1995 .

[86]  T. Stossel On the crawling of animal cells. , 1993, Science.

[87]  F. Harlow,et al.  Cell motion, contractile networks, and the physics of interpenetrating reactive flow. , 1986, Biophysical journal.

[88]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[89]  M. Abercrombie,et al.  The locomotion of fibroblasts in culture. I. Movements of the leading edge. , 1970, Experimental cell research.

[90]  I. Aranson Physical Models of Cell Motility , 2016 .

[91]  J. M. Oliver,et al.  On a poroviscoelastic model for cell crawling , 2015, Journal of mathematical biology.

[92]  Hans G. Othmer,et al.  A continuum model of motility in ameboid cells , 2004, Bulletin of mathematical biology.

[93]  T D Pollard,et al.  Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. , 2000, Annual review of biophysics and biomolecular structure.

[94]  S. Kuroda,et al.  Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. , 1999, Annual review of biochemistry.

[95]  G. E. Jones,et al.  The Rho GTPases in macrophage motility and chemotaxis. , 1998, Cell adhesion and communication.

[96]  Dennis Bray,et al.  Cell Movements: From Molecules to Motility , 1992 .

[97]  J. Griffith,et al.  Mathematics of cellular control processes. I. Negative feedback to one gene. , 1968, Journal of theoretical biology.

[98]  Alex Mogilner,et al.  Mathematics of Cell Motility: Have We Got Its Number? , 2022 .

[99]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .