Arbitrary Lagrangian Eulerian approximation with remeshing for Navier–Stokes equations

An algorithm that allows remeshing in the arbitrary Lagrangian Eulerian (ALE) framework is presented. At every time step, we could triangulate the domain using either uniform size meshes or adapted meshes. We analyze the conditions when two time-advancing algorithms based on the backward Euler scheme provide identical approximations. Numerical results are presented for Navier–Stokes equations on moving domain. For three academic tests presented in this paper, the uniform size mesh technique provides more accurate results than the classical ALE method, in particular when the domain is expanding particularly fast. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[2]  Paul-Louis George,et al.  Génération automatique de maillages : applications aux méthodes d'éléments finis , 1991 .

[3]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[4]  Alfio Quarteroni,et al.  Mathematical Modelling and Numerical Simulation of the Cardiovascular System , 2004 .

[5]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[6]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[7]  O. Pironneau Finite Element Methods for Fluids , 1990 .

[8]  C. Murea,et al.  Numerical procedure with analytic derivative for unsteady fluid–structure interaction , 2007 .

[9]  Fabio Nobile,et al.  A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .

[10]  Frédéric Hecht,et al.  A fews snags in mesh adaptation loops , 2005, IMR.

[11]  Wulf G. Dettmer,et al.  An adaptive remeshing strategy for flows with moving boundaries and fluid–structure interaction , 2007 .

[12]  H. Hentschel,et al.  A finite element method for growth in biological development. , 2007, Mathematical biosciences and engineering : MBE.

[13]  Yiannis Ventikos,et al.  Local remeshing for large amplitude grid deformations , 2008, J. Comput. Phys..

[14]  J. Hyvärinen,et al.  An Arbitrary Lagrangian-Eulerian finite element method , 1998 .

[15]  Jörn Mosler,et al.  On the numerical implementation of variational arbitrary Lagrangian–Eulerian (VALE) formulations , 2006, International Journal for Numerical Methods in Engineering.

[16]  C. Murea Numerical simulation of a pulsatile flow through a flexible channel , 2006 .

[17]  J. Batina Unsteady Euler airfoil solutions using unstructured dynamic meshes , 1989 .

[18]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[19]  R. Temam,et al.  Navier-stokes equations: Theory and approximation , 1998 .