Low-dimensional representations for the simulation and control of complex dynamics

Most work in computer simulation has focused on off-line algorithms where each step can take arbitrarily long to compute. This thesis focuses instead on interactive simulations that run in real-time. Besides running quickly, such simulations must allow interaction, remain stable under unexpected user input, and remain "correct" (in some sense) for unbounded periods of time. Further, biomechanical simulation requires near-instantaneous planning without simulating the future. These requirements motivate the development of fundamentally new simulation algorithms. This thesis approaches the interactive simulation problem by developing new, low-dimensional representations of the phenomena being simulated. These representations perform several functions at once. First, they can correlate many degrees of freedom of the underlying phenomenon, allowing us to represent the system with fewer variables. Second, the reduction is constructed so as to allow rapid simulation or control. Finally, the representations allow us to express correctness constraints. Three examples of such simulations are presented, covering fluids, crowds, and human animation. The fluid model enables large, real-time, detailed flows with continuous user interaction, and can handle moving objects immersed in the flow. The crowd model is based on a fluid-like continuum representation, and naturally exhibits emergent phenomena that have been observed in real crowds. Finally, the human model can automatically compute near-optimal human animations using a low-dimensional basis representation of the planning space.

[1]  Rüdiger Westermann,et al.  Linear algebra operators for GPU implementation of numerical algorithms , 2003, SIGGRAPH Courses.

[2]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2007, Graph. Model..

[3]  S. Gueron,et al.  Self-organization of front patterns in large wildebeest herds , 1993 .

[4]  Jim X. Chen,et al.  Toward Interactive-Rate Simulation of Fluids with Moving Obstacles Using Navier-Stokes Equations , 1995, CVGIP Graph. Model. Image Process..

[5]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[6]  Doug L. James,et al.  Precomputing interactive dynamic deformable scenes , 2003, ACM Trans. Graph..

[7]  Manfred Lau,et al.  Precomputed search trees: planning for interactive goal-driven animation , 2006, SCA '06.

[8]  Nancy S. Pollard,et al.  To appear in the ACM SIGGRAPH conference proceedings Responsive Characters from Motion Fragments , 2022 .

[9]  Stanley Osher,et al.  Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..

[10]  Roger L. Hughes,et al.  A continuum theory for the flow of pedestrians , 2002 .

[11]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[12]  Jos Starn A Simple Fluid Solver Based on the FFT , 2001, J. Graphics, GPU, & Game Tools.

[13]  Dimitris N. Metaxas,et al.  Modeling the motion of a hot, turbulent gas , 1997, SIGGRAPH.

[14]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[15]  J. Marsden,et al.  Reduction and reconstruction for self-similar dynamical systems , 2002 .

[16]  Sang Il Park,et al.  Vortex fluid for gaseous phenomena , 2005, SCA '05.

[17]  I. Couzin,et al.  Self-Organization and Collective Behavior in Vertebrates , 2003 .

[18]  Arie E. Kaufman,et al.  Implementing lattice Boltzmann computation on graphics hardware , 2003, The Visual Computer.

[19]  J. Marsden,et al.  Reconstruction equations and the Karhunen—Loéve expansion for systems with symmetry , 2000 .

[20]  Jehee Lee,et al.  Motion patches: building blocks for virtual environments annotated with motion data , 2006, ACM Trans. Graph..

[21]  Céline Loscos,et al.  Intuitive crowd behavior in dense urban environments using local laws , 2003, Proceedings of Theory and Practice of Computer Graphics, 2003..

[22]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[23]  Donald H. House,et al.  Wave particles , 2007, ACM Trans. Graph..

[24]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH '08.

[25]  Roger L. Hughes,et al.  Mathematical modelling of a mediaeval battle: the Battle of Agincourt, 1415 , 2004, Math. Comput. Simul..

[26]  Leonidas J. Guibas,et al.  Scalable nonlinear dynamical systems for agent steering and crowd simulation , 2001, Comput. Graph..

[27]  J. Deneubourg,et al.  The blind leading the blind: Modeling chemically mediated army ant raid patterns , 1989, Journal of Insect Behavior.

[28]  James F. O'Brien,et al.  Animating gases with hybrid meshes , 2005, ACM Trans. Graph..

[29]  Jessica K. Hodgins,et al.  Animating explosions , 2000, SIGGRAPH.

[30]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[31]  Lucas Kovar,et al.  Fast and accurate goal-directed motion synthesis for crowds , 2005, SCA '05.

[32]  Eitan Grinspun,et al.  Sparse matrix solvers on the GPU: conjugate gradients and multigrid , 2003, ACM Trans. Graph..

[33]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[34]  Tsai-Yen Li,et al.  Motion planning for a crowd of robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[35]  Paul W. Cleary,et al.  Bubbling and frothing liquids , 2007, ACM Trans. Graph..

[36]  J. Lumley Stochastic tools in turbulence , 1970 .

[37]  Huamin Wang,et al.  Water drops on surfaces , 2005, ACM Trans. Graph..

[38]  J. Anderson,et al.  Computational fluid dynamics : the basics with applications , 1995 .

[39]  N. Ahuja,et al.  Out-of-core tensor approximation of multi-dimensional matrices of visual data , 2005, SIGGRAPH 2005.

[40]  Ronald Fedkiw,et al.  Efficient simulation of large bodies of water by coupling two and three dimensional techniques , 2006, ACM Trans. Graph..

[41]  Jessica K. Hodgins,et al.  Analyzing the physical correctness of interpolated human motion , 2005, SCA '05.

[42]  R. Hughes The flow of human crowds , 2003 .

[43]  Taesoo Kwon,et al.  Motion modeling for on-line locomotion synthesis , 2005, SCA '05.

[44]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[45]  David A. Forsyth,et al.  Motion synthesis from annotations , 2003, ACM Trans. Graph..

[46]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[47]  Satinder Singh,et al.  An upper bound on the loss from approximate optimal-value functions , 1994, Machine Learning.

[48]  John Funge,et al.  Cognitive modeling: knowledge, reasoning and planning for intelligent characters , 1999, SIGGRAPH.

[49]  D. Helbing,et al.  Self-organizing pedestrian movement; Environment and Planning B , 2001 .

[50]  D. Thalmann,et al.  A navigation graph for real-time crowd animation on multilayered and uneven terrain , 2005 .

[51]  J. Toner,et al.  Flocks, herds, and schools: A quantitative theory of flocking , 1998, cond-mat/9804180.

[52]  Joëlle Thollot,et al.  A physically-based particle model of emergent crowd behaviors , 2010, ArXiv.

[53]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[54]  Jessica K. Hodgins,et al.  Reactive pedestrian path following from examples , 2004, The Visual Computer.

[55]  R. Full,et al.  Mechanical aspects of legged locomotion control. , 2004, Arthropod structure & development.

[56]  Irfan A. Essa,et al.  Machine Learning for Video-Based Rendering , 2000, NIPS.

[57]  C. Karen Liu,et al.  Synthesis of complex dynamic character motion from simple animations , 2002, ACM Trans. Graph..

[58]  Jessica K. Hodgins,et al.  Construction and optimal search of interpolated motion graphs , 2007, ACM Trans. Graph..

[59]  Andreas Schadschneider,et al.  Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics , 2002 .

[60]  Lynne E. Parker Designing control laws for cooperative agent teams , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[61]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2006, SIGGRAPH Courses.

[62]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[63]  Daniel C. Haworth,et al.  Application of the proper orthogonal decomposition to datasets of internal combustion engine flows , 2004 .

[64]  Duc Quang Nguyen,et al.  Physically based modeling and animation of fire , 2002, ACM Trans. Graph..

[65]  J. W. Nieuwenhuis,et al.  Boekbespreking van D.P. Bertsekas (ed.), Dynamic programming and optimal control - volume 2 , 1999 .

[66]  Jehee Lee,et al.  Simulating biped behaviors from human motion data , 2007, ACM Trans. Graph..

[67]  Andrew Lewis,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH '06.

[68]  Sung Yong Shin,et al.  Planning biped locomotion using motion capture data and probabilistic roadmaps , 2003, TOGS.

[69]  Mohit Gupta,et al.  Legendre fluids: a unified framework for analytic reduced space modeling and rendering of participating media , 2007, SCA '07.

[70]  Soraia Raupp Musse,et al.  A Model of Human Crowd Behavior : Group Inter-Relationship and Collision Detection Analysis , 1997, Computer Animation and Simulation.

[71]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .

[72]  R. Colombo,et al.  Pedestrian flows and non‐classical shocks , 2005 .

[73]  J. Lumley,et al.  Extended Proper Orthogonal Decomposition: Application to Jet/Vortex Interaction , 2001 .

[74]  Patrick Witting,et al.  Computational fluid dynamics in a traditional animation environment , 1999, SIGGRAPH.

[75]  D. Helbing,et al.  Computer Simulations of Pedestrian Dynamics and Trail Formation , 1998, cond-mat/9805074.

[76]  Dirk Helbing,et al.  Self-Organizing Pedestrian Movement , 2001 .

[77]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[78]  P. Sagaut,et al.  Calibrated reduced-order POD-Galerkin system for fluid flow modelling , 2005 .

[79]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[80]  Greg Humphreys,et al.  A multigrid solver for boundary value problems using programmable graphics hardware , 2003, HWWS '03.

[81]  Stephen Chenney,et al.  Flow tiles , 2004, SCA '04.

[82]  Joseph J. Hale,et al.  From Disorder to Order in Marching Locusts , 2006, Science.

[83]  Steven V. Viscido,et al.  Self-Organized Fish Schools: An Examination of Emergent Properties , 2002, The Biological Bulletin.

[84]  I. Aoki A simulation study on the schooling mechanism in fish. , 1982 .

[85]  Ryan F. Schmit,et al.  Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles , 2003 .

[86]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[87]  Hyun Joon Shin,et al.  Snap-together motion: assembling run-time animations , 2003, SIGGRAPH '08.

[88]  Demetri Terzopoulos,et al.  Artificial fishes: physics, locomotion, perception, behavior , 1994, SIGGRAPH.

[89]  WuEnhua,et al.  An improved study of real-time fluid simulation on GPU , 2004 .

[90]  David C. Brogan,et al.  Group Behaviors for Systems with Significant Dynamics , 1997, Auton. Robots.

[91]  Hyun Joon Shin,et al.  Fat graphs: constructing an interactive character with continuous controls , 2006, SCA '06.

[92]  Michael Gleicher,et al.  Scalable behaviors for crowd simulation , 2004, Comput. Graph. Forum.

[93]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[94]  Daniel Thalmann,et al.  Crowd modelling in collaborative virtual environments , 1998, VRST '98.

[95]  Jehee Lee,et al.  Precomputing avatar behavior from human motion data , 2006, Graph. Model..

[96]  Nancy M. Amato,et al.  Better Group Behaviors in Complex Environments using Global Roadmaps , 2002 .

[97]  N. Badler,et al.  Crowd simulation incorporating agent psychological models, roles and communication , 2005 .

[98]  Ronald C. Arkin,et al.  Motor Schema — Based Mobile Robot Navigation , 1989, Int. J. Robotics Res..

[99]  G. Karniadakis,et al.  A spectral viscosity method for correcting the long-term behavior of POD models , 2004 .

[100]  Zoran Popovic,et al.  Motion warping , 1995, SIGGRAPH.

[101]  G. F.,et al.  From individuals to aggregations: the interplay between behavior and physics. , 1999, Journal of theoretical biology.

[102]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[103]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[104]  Anselmo Lastra,et al.  Physically-based visual simulation on graphics hardware , 2002, HWWS '02.

[105]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[106]  David R. Williams,et al.  Linear models for control of cavity flow oscillations , 2006, Journal of Fluid Mechanics.

[107]  J. Deneubourg,et al.  The blind leading the blind in army ant raid patterns: Testing a model of self-organization (Hymenoptera: Formicidae) , 1991, Journal of Insect Behavior.

[108]  W. Burgard,et al.  Finding Solvable Priority Schemes for Decoupled Path Planning Techniques for Teams of Mobile Robots , 2001 .

[109]  Jessica K. Hodgins,et al.  Interactive control of avatars animated with human motion data , 2002, SIGGRAPH.

[110]  I D Couzin,et al.  Self-organized lane formation and optimized traffic flow in army ants , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[111]  Roger Temam,et al.  On the nonlinear Galerkin methods , 1989 .

[112]  Charles E. Hughes,et al.  Real-Time Fluid Simulation in a Dynamic Virtual Environment , 1997, IEEE Computer Graphics and Applications.

[113]  Leah Edelstein-Keshet,et al.  Do travelling band solutions describe cohesive swarms? An investigation for migratory locusts , 1998 .

[114]  Stéphane Donikian,et al.  Crowd of Virtual Humans: a New Approach for Real Time Navigation in Complex and Structured Environments , 2004, Comput. Graph. Forum.

[115]  C. Fletcher Computational techniques for fluid dynamics , 1992 .

[116]  Ronald Fedkiw,et al.  Multiple interacting liquids , 2006, SIGGRAPH 2006.

[117]  Craig W. Reynolds Steering Behaviors For Autonomous Characters , 1999 .

[118]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[119]  Christoph Bregler,et al.  Motion capture assisted animation: texturing and synthesis , 2002, ACM Trans. Graph..

[120]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[121]  Andrew W. Moore,et al.  The parti-game algorithm for variable resolution reinforcement learning in multidimensional state-spaces , 2004, Machine Learning.

[122]  Andrew Selle,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[123]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[124]  Okan Arikan,et al.  Interactive motion generation from examples , 2002, ACM Trans. Graph..

[125]  Mark H. Overmars,et al.  Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004) , 2022 .

[126]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[127]  W. Rappel,et al.  Self-organization in systems of self-propelled particles. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.