Robust Nonnegative Sparse Recovery and the Nullspace Property of 0/1 Measurements

We investigate recovery of nonnegative vectors from non-adaptive compressive measurements in the presence of noise of unknown power. In the absence of noise, existing results in the literature identify properties of the measurement that assure uniqueness in the non-negative orthant. By linking such uniqueness results to nullspace properties, we deduce uniform and robust compressed sensing guarantees for nonnegative least squares. No <inline-formula> <tex-math notation="LaTeX">$\ell _{1}$ </tex-math></inline-formula>-regularization is required. As an important proof of principle, we establish that <inline-formula> <tex-math notation="LaTeX">$m\times n$ </tex-math></inline-formula> random i.i.d. 0/1-valued Bernoulli matrices obey the required conditions with overwhelming probability provided that <inline-formula> <tex-math notation="LaTeX">$m= \mathcal {O}(s\log (n/s))$ </tex-math></inline-formula>. We achieve this by establishing the robust nullspace property for random 0/1-matrices—a novel result in its own right. Our analysis is motivated by applications in wireless network activity detection.

[1]  Holger Rauhut,et al.  Low rank matrix recovery from rank one measurements , 2014, ArXiv.

[2]  S. Geer,et al.  Rejoinder: ℓ1-penalization for mixture regression models , 2010 .

[3]  Huy L. Nguyen,et al.  Sparsity lower bounds for dimensionality reducing maps , 2012, STOC '13.

[4]  Alexandros G. Dimakis,et al.  Sparse Recovery of Nonnegative Signals With Minimal Expansion , 2011, IEEE Transactions on Signal Processing.

[5]  Richard Kueng,et al.  RIPless compressed sensing from anisotropic measurements , 2012, ArXiv.

[6]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[7]  N. Meinshausen Sign-constrained least squares estimation for high-dimensional regression , 2012, 1202.0889.

[8]  S. Mendelson,et al.  Compressed sensing under weak moment assumptions , 2014, 1401.2188.

[9]  Peter Jung,et al.  Robust nonnegative sparse recovery and 0/1-Bernoulli measurements , 2016, 2016 IEEE Information Theory Workshop (ITW).

[10]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[11]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[12]  V. Koltchinskii,et al.  Bounding the smallest singular value of a random matrix without concentration , 2013, 1312.3580.

[13]  D. Donoho,et al.  Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[15]  Michael Elad,et al.  On the uniqueness of non-negative sparse & redundant representations , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[16]  Jean-Jacques Fuchs,et al.  Sparsity and uniqueness for some specific under-determined linear systems , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[17]  I. Johnstone,et al.  Maximum Entropy and the Nearly Black Object , 1992 .

[18]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[19]  Venkat Chandar,et al.  Sparse graph codes for compression, sensing, and secrecy , 2010 .

[20]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[21]  Matthias Hein,et al.  Sparse recovery by thresholded non-negative least squares , 2011, NIPS.

[22]  Jeffrey E. Boyd,et al.  Evaluation of statistical and multiple-hypothesis tracking for video traffic surveillance , 2003, Machine Vision and Applications.

[23]  Götz E. Pfander,et al.  Sampling Theory, a Renaissance : Compressive Sensing and Other Developments , 2015 .

[24]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[25]  Holger Rauhut,et al.  Analysis ℓ1-recovery with Frames and Gaussian Measurements , 2015, ArXiv.

[26]  Shahar Mendelson,et al.  Learning without Concentration , 2014, COLT.

[27]  Shuheng Zhou,et al.  25th Annual Conference on Learning Theory Reconstruction from Anisotropic Random Measurements , 2022 .

[28]  S. Jiao,et al.  Compressed sensing and reconstruction with bernoulli matrices , 2010, The 2010 IEEE International Conference on Information and Automation.

[29]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[30]  Joel A. Tropp,et al.  Convex recovery of a structured signal from independent random linear measurements , 2014, ArXiv.

[31]  Slawomir Stanczak,et al.  Block compressed sensing based distributed resource allocation for M2M communications , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[32]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[33]  Cun-Hui Zhang,et al.  Scaled sparse linear regression , 2011, 1104.4595.

[34]  Emmanuel J. Cand The Restricted Isometry Property and Its Implications for Compressed Sensing , 2008 .

[35]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[36]  Y. Vardi,et al.  Network Tomography: Estimating Source-Destination Traffic Intensities from Link Data , 1996 .

[37]  Holger Rauhut,et al.  On the gap between RIP-properties and sparse recovery conditions , 2015, ArXiv.

[38]  Simon Foucart,et al.  Sparse Recovery by Means of Nonnegative Least Squares , 2014, IEEE Signal Processing Letters.

[39]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[40]  Robert Nowak,et al.  Network Tomography: Recent Developments , 2004 .

[41]  Philip Schniter,et al.  An Empirical-Bayes Approach to Recovering Linearly Constrained Non-Negative Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[42]  Holger Rauhut,et al.  Stable low-rank matrix recovery via null space properties , 2015, ArXiv.

[43]  Piotr Indyk,et al.  Combining geometry and combinatorics: A unified approach to sparse signal recovery , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[44]  J. Tropp User-Friendly Tools for Random Matrices: An Introduction , 2012 .

[45]  V. V. Buldygin,et al.  The sub-Gaussian norm of a binary random variable , 2013 .

[46]  Sylvie Huet,et al.  High-dimensional regression with unknown variance , 2011, 1109.5587.

[47]  Ao Tang,et al.  A Unique “Nonnegative” Solution to an Underdetermined System: From Vectors to Matrices , 2010, IEEE Transactions on Signal Processing.

[48]  Holger Rauhut,et al.  On the Gap Between Restricted Isometry Properties and Sparse Recovery Conditions , 2018, IEEE Transactions on Information Theory.

[49]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..