An optimal PID controller for a biped robot walking on flat terrain using MCIWO algorithms

The design of appropriate controller plays an important role in achieving the dynamically balanced gaits of the biped robot. The present paper deals with the tuning of gains (Kp, Kd and Ki) of the proposed PID controller using two non-traditional global optimization algorithms, namely Particle Swarm Optimization (PSO) and a variant of Invasive Weed Optimization (IWO) called Modified Chaotic Invasive Weed Optimization (MCIWO) algorithms, which is newly proposed by the authors. The effectiveness of the newly proposed MCIWO algorithm has been verified with the help of benchmark functions by conducting the normality test, parametric and non-parametric tests. Further, the developed MCIWO algorithm is used to develop the optimal PID controller for the biped robot. Once the PID controllers are optimized, the performance of the controllers in terms of various performance measures of the biped robot are compared. Finally, the gait generated using the optimal PID controllers are tested on a real biped robot.

[1]  A.A. Kishk,et al.  Invasive Weed Optimization and its Features in Electromagnetics , 2010, IEEE Transactions on Antennas and Propagation.

[2]  Rakesh Gautam,et al.  Modeling and control of joint angles of a biped robot leg using PID controllers , 2015, 2015 IEEE International Conference on Engineering and Technology (ICETECH).

[3]  Zwe-Lee Gaing,et al.  A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004 .

[4]  Caro Lucas,et al.  A novel numerical optimization algorithm inspired from weed colonization , 2006, Ecol. Informatics.

[5]  P. Manikandan,et al.  Soft computing techniques based optimal tuning of virtual feedback PID controller for chemical tank reactor , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[6]  A. Visioli Tuning of PID controllers with fuzzy logic , 2001 .

[7]  Youngjoon Han,et al.  Balance control of a biped robot using camera image of reference object , 2009 .

[8]  G. M. Khoury,et al.  Fuzzy PID Control of a Five DOF Robot Arm , 2004, J. Intell. Robotic Syst..

[9]  B. Aghbali,et al.  ZMP trajectory control of a humanoid robot using different controllers based on an offline trajectory generation , 2013, 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM).

[10]  Tusar Kanti Mishra,et al.  Velocity adaptation based PSO for localization in wireless sensor networks , 2018, Evol. Intell..

[11]  Jamshid Aghaei,et al.  Application of chaos-based chaotic invasive weed optimization techniques for environmental OPF problems in the power system , 2014 .

[12]  D. Herrero-Pérez,et al.  A Simple Feedback Controller to Reduce Angular Momentum in ZMP-Based Gaits , 2013 .

[13]  Václav Snásel,et al.  A modified Invasive Weed Optimization algorithm for time-modulated linear antenna array synthesis , 2010, IEEE Congress on Evolutionary Computation.

[14]  Ravi Kumar Mandava,et al.  Whole body motion generation of 18-DOF biped robot on flat surface during SSP & DSP , 2018 .

[15]  Haijing Zhou,et al.  Yagi-Uda Antenna Optimization Based on Invasive Weed Optimization Method , 2011 .

[16]  Akihito Sano,et al.  Realization of natural dynamic walking using the angular momentum information , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[17]  Swagatam Das,et al.  Design of Non-Uniform Circular Antenna Arrays Using a Modified Invasive Weed Optimization Algorithm , 2011, IEEE Transactions on Antennas and Propagation.

[18]  Navid Razmjooy,et al.  A new design for PID controller by considering the operating points changes in Hydro-Turbine Connected to the equivalent network by using Invasive Weed Optimization (IWO) Algorithm , 2015 .

[19]  Safya Belghith,et al.  Trajectory Generation using Predictive PID Control for Stable Walking Humanoid Robot , 2015 .

[20]  Mahmud Iwan Solihin,et al.  Tuning of PID Controller Using Particle Swarm Optimization (PSO) , 2011 .

[21]  Gary William Grewal,et al.  Advancing genetic algorithm approaches to field programmable gate array placement with enhanced recombination operators , 2014, Evol. Intell..

[22]  Kanjanapan Sukvichai The Development of Nonlinear Model Reference PID Controller for a bipedal robot , 2011 .

[23]  PANDU RANGA VUNDAVILLI,et al.  Balanced gait generations of a two-legged robot on sloping surface , 2011 .

[24]  Ahmad Bagheri,et al.  Mathematical simulation of a seven link biped robot on various surfaces and ZMP considerations , 2007 .

[25]  Ahmad Bagheri,et al.  Mathematical Modelling and Simulation of Combined Trajectory Paths of a Seven Link Biped Robot , 2010 .

[26]  F. N. Hassan,et al.  Optimal PID control of a brushless DC motor using PSO and BF techniques , 2014 .

[27]  Subranshu Sekhar Dash,et al.  A hybrid stochastic fractal search and local unimodal sampling based multistage PDF plus (1 + PI) controller for automatic generation control of power systems , 2017, J. Frankl. Inst..

[28]  Patrizio Tomei,et al.  Adaptive PD controller for robot manipulators , 1991, IEEE Trans. Robotics Autom..

[29]  Y. Ramu Naidu,et al.  A hybrid version of invasive weed optimization with quadratic approximation , 2015, Soft Comput..

[30]  Rene V. Mayorga,et al.  A Seven Link Biped Robot Walking Pattern Generation on Various Surfaces , 2017 .

[31]  Fan-Ren Chang,et al.  Anthropomorphic Design of the Human-Like Walking Robot , 2013 .

[32]  Sake Pothalaiah,et al.  Evolutionary soft computing tools based tuning of PID controller for EMA-AFC , 2009, TENCON 2009 - 2009 IEEE Region 10 Conference.

[33]  Hassan B. Kazemian,et al.  The SOF-PID controller for the control of a MIMO robot arm , 2002, IEEE Trans. Fuzzy Syst..

[34]  José Luis Gordillo,et al.  Kinematics and Dynamics of a New 16 DOF Humanoid Biped Robot with Active Toe Joint , 2012 .

[35]  Kazuhito Yokoi,et al.  Biped walking stabilization based on linear inverted pendulum tracking , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Leandro dos Santos Coelho,et al.  Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator , 2012, Expert Syst. Appl..

[37]  Lina,et al.  Fuzzy-Appearance Manifold and Fuzzy-Nearest Distance Calculation for Model-Less 3D Pose Estimation of Degraded Face Images , 2013 .

[38]  Kazuhito Yokoi,et al.  Planning walking patterns for a biped robot , 2001, IEEE Trans. Robotics Autom..

[39]  Pierre Borne,et al.  Tuning PID Controller Using Multiobjective Ant Colony Optimization , 2012, Appl. Comput. Intell. Soft Comput..

[40]  Subhransu Sekhar Dash,et al.  A modified whale optimization algorithm-based adaptive fuzzy logic PID controller for load frequency control of autonomous power generation systems , 2017 .

[41]  Ching-Long Shih,et al.  Ascending and descending stairs for a biped robot , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[42]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[43]  B. Nagaraj,et al.  Tuning of a PID Controller using Soft Computing Methodologies Applied to Moisture Control in Paper Machine , 2012, Intell. Autom. Soft Comput..

[44]  Martin Middendorf,et al.  Population based ant colony optimization for reconstructing ECG signals , 2016, Evol. Intell..

[45]  Dilip Kumar Pratihar,et al.  Dynamically Balanced Ascending and Descending Gaits of a Two-Legged Robot , 2007, Int. J. Humanoid Robotics.

[46]  Javaid Iqbal,et al.  On the Improvement of Multi-Legged Locomotion over Difficult Terrains Using a Balance Stabilization Method: , 2012 .

[47]  S. Mirjalili,et al.  A new hybrid PSOGSA algorithm for function optimization , 2010, 2010 International Conference on Computer and Information Application.