A Family of Global Stabilizers for Quasi-Optimal Control of Planar Linear Saturated Systems

We propose a family of nonlinear state feedback global stabilizers for all planar linear systems which are globally stabilizable by bounded inputs (namely, all non exponentially unstable linear systems). This family is parametrized by a nonlinear function whose selection can yield quasi time-optimal responses, where the ¿quasi¿ is required to achieve local exponential stability of the closed loop. The arising trajectories are quasi-time-optimal for arbitrarily large initial conditions; so, we expect the very simple proposed nonlinear control law to be very useful for embedded control applications with strong computational constraints.

[1]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[2]  B. Piccoli,et al.  A Generic Classification of Time-Optimal Planar Stabilizing Feedbacks , 1998 .

[3]  Luca Zaccarian,et al.  On "uniformity" in definitions of global asymptotic stability for time-varying nonlinear systems , 2006, Autom..

[4]  Chung-Yao Kao,et al.  On the L2-gain of a double integrator with feedback loop saturation nonlinearity , 2001, IEEE Trans. Autom. Control..

[5]  A. Teel,et al.  A smooth Lyapunov function from a class- ${\mathcal{KL}}$ estimate involving two positive semidefinite functions , 2000 .

[6]  Jaroslav Kurzweil,et al.  Об обращении второй теоремы Ляпунова об устойчивости движения , 1956 .

[7]  Eduardo Sontag An algebraic approach to bounded controllability of linear systems , 1984 .

[8]  Benedetto Piccoli,et al.  Geometric control approach to synthesis theory. , 1998 .

[9]  Zongli Lin,et al.  Global practical stabilization of planar linear systems in the presence of actuator saturation and input additive disturbance , 2006, IEEE Transactions on Automatic Control.

[10]  A. Fuller In-the-large stability of relay and saturating control systems with linear controllers , 1969 .

[11]  Dennis S. Bernstein,et al.  Global stabilization of systems containing a double integrator using a saturated linear controller , 1999 .

[12]  Dennis S. Bernstein,et al.  Finite settling time control of the double integrator using a virtual trap-door absorber , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[13]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[14]  Wu-Xing Jing,et al.  Memorised quasi-time-fuel-optimal feedback control of perturbed double integrator , 2002, Autom..

[15]  A. Saberi,et al.  On the input-to-state stability (ISS) of a double integrator with saturated linear control laws , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[16]  W. Brockett,et al.  Minimum attention control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[17]  Dominique Bonvin,et al.  Attraction Region of Planar Linear Systems with One Unstable Pole and Saturated Feedback , 2006 .

[18]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[19]  Héctor J. Sussmann,et al.  The structure of time-optimal trajectories for single-input systems in the plane: the general real analytic case , 1987 .

[20]  A. Teel A nonlinear small gain theorem for the analysis of control systems with saturation , 1996, IEEE Trans. Autom. Control..

[21]  B. Barmish,et al.  Null Controllability of Linear Systems with Constrained Controls , 2006 .

[22]  Meir Pachter,et al.  Toward improvement of tracking performance nonlinear feedback for linear systems , 1998 .

[23]  B. Piccoli,et al.  Optimal Syntheses for Control Systems on 2-D Manifolds , 2004 .

[24]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[25]  R.T. O'Brien,et al.  Vehicle lateral control using a double integrator control strategy , 2004, Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the.

[26]  H. Sussmann,et al.  On the stabilizability of multiple integrators by means of bounded feedback controls , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[27]  Dennis S. Bernstein,et al.  Naive control of the double integrator , 2001 .

[28]  Zbigniew Galias Finite switching frequency effects in the sliding mode control of the double integrator system , 2006, 2006 IEEE International Symposium on Circuits and Systems.