The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation.

We have developed a computational framework for accurate and efficient simulation of stochastic spatially inhomogeneous biochemical systems. The new computational method employs a fractional step hybrid strategy. A novel formulation of the finite state projection (FSP) method, called the diffusive FSP method, is introduced for the efficient and accurate simulation of diffusive transport. Reactions are handled by the stochastic simulation algorithm.

[1]  Richard D. Braatz,et al.  A hybrid multiscale kinetic Monte Carlo method for simulation of copper electrodeposition , 2008, J. Comput. Phys..

[2]  David Fange,et al.  Noise-Induced Min Phenotypes in E. coli , 2006, PLoS Comput. Biol..

[3]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[4]  Martin Howard,et al.  Stochastic model for Soj relocation dynamics in Bacillus subtilis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[6]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[7]  Hong Li,et al.  Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. , 2004, The Journal of chemical physics.

[8]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[9]  Brian Munsky,et al.  A multiple time interval finite state projection algorithm for the solution to the chemical master equation , 2007, J. Comput. Phys..

[10]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[11]  Samuel A. Isaacson,et al.  The Reaction-Diffusion Master Equation as an Asymptotic Approximation of Diffusion to a Small Target , 2009, SIAM J. Appl. Math..

[12]  October I Physical Review Letters , 2022 .

[13]  R. Erban,et al.  Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions , 2009, Physical biology.

[14]  K. Burrage,et al.  A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems , 2006 .

[15]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[16]  Andrei N. Kolmogorov,et al.  Logical basis for information theory and probability theory , 1968, IEEE Trans. Inf. Theory.

[17]  Qing Nie,et al.  Modeling Robustness Tradeoffs in Yeast Cell Polarization Induced by Spatial Gradients , 2008, PloS one.

[18]  Johan Hattne,et al.  Stochastic reaction-diffusion simulation with MesoRD , 2005, Bioinform..

[19]  Jaap A. Kaandorp,et al.  Spatial stochastic modelling of the phosphoenolpyruvate-dependent phosphotransferase (PTS) pathway in Escherichia coli , 2006, Bioinform..

[20]  D. Gillespie A rigorous derivation of the chemical master equation , 1992 .

[21]  J. W.,et al.  The Journal of Physical Chemistry , 1900, Nature.

[22]  K. McNeil,et al.  Correlations in stochastic theories of chemical reactions , 1976 .

[23]  Aidan P Thompson,et al.  A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. , 2008, The Journal of chemical physics.

[24]  Rainer Breitling,et al.  What is Systems Biology? , 2010, Front. Physiology.

[25]  Edda Klipp,et al.  Systems Biology , 1994 .

[26]  Andreas Hellander,et al.  Simulation of Stochastic Reaction-Diffusion Processes on Unstructured Meshes , 2008, SIAM J. Sci. Comput..

[27]  Daniel T Gillespie,et al.  Stochastic simulation of chemical kinetics. , 2007, Annual review of physical chemistry.

[28]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[29]  Journal of Chemical Physics , 1932, Nature.

[30]  Tatiana T Marquez-Lago,et al.  Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics. , 2007, The Journal of chemical physics.

[31]  Sotiria Lampoudi,et al.  The multinomial simulation algorithm for discrete stochastic simulation of reaction-diffusion systems. , 2009, The Journal of chemical physics.

[32]  S. Solomon,et al.  The importance of being discrete: life always wins on the surface. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[34]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[35]  Brian Munsky,et al.  Reduction and solution of the chemical master equation using time scale separation and finite state projection. , 2006, The Journal of chemical physics.

[36]  M. Khammash,et al.  The finite state projection algorithm for the solution of the chemical master equation. , 2006, The Journal of chemical physics.

[37]  Andrew D Rutenberg,et al.  Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. , 2003, Physical review letters.

[38]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[39]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[40]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.