Quartz Regeneration and its Use as a Repository of Genetic Information

Quartz represents one of the most widespread minerals and is widely used in geosciences to reconstruct physic-chemical conditions of rock and mineral formation. However, interpretation of analytical data may be limited by the ability of quartz to regenerate during secondary alteration processes occurring under metamorphic or hydrothermal conditions. This behaviour distinguishes quartz from most minerals commonly associated with. Primary genetic information is obliterated during quartz regeneration. This includes features related to the real structure of quartz, but also to fluid and mineral inclusions. The present contribution examines examples covering various fields of mineral research, namely the genetic interpretation of trace element content in quartz, quartz provenance analysis using cathodoluminescence (CL) colour imaging, and the analysis of mineral and fluid inclusions in quartz. It is demonstrated in all cases that care needs to be taken when interpreting genetic information encoded. Distinction of features related to primary growth or secondary alteration is not simple and requires application of complementary analytical techniques.

[1]  S. Penniston‐Dorland Illumination of vein quartz textures in a porphyry copper ore deposit using scanned cathodoluminescence: Grasberg Igneous Complex, Irian Jaya, Indonesia , 2001 .

[2]  H. Lowers,et al.  Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry , 2011 .

[3]  Thomas Monecke,et al.  Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system , 2011 .

[4]  E. Watson,et al.  TitaniQ: a titanium-in-quartz geothermometer , 2006 .

[5]  F. Buckley,et al.  A modified crush-leach method for the analysis of fluid inclusion electrolytes , 1988 .

[6]  N. Rogers,et al.  Re–Os isotope and PGE constraints on the timing and origin of gold mineralisation in the Witwatersrand Basin , 2010 .

[7]  G. Zuffa,et al.  Provenance of arenites , 1985 .

[8]  R. Knipe,et al.  Hydrothermal gold mineralization in the Witwatersrand basin , 1997, Nature.

[9]  F. Spear,et al.  Cathodoluminescence imaging and titanium thermometry in metamorphic quartz , 2009 .

[10]  B. Sørensen,et al.  Coupled trace element mobilisation and strain softening in quartz during retrograde fluid infiltration in dry granulite protoliths , 2009 .

[11]  R. Bakker Reequilibration of fluid inclusions: Bulk-diffusion , 2009 .

[12]  J. Ruedrich,et al.  Microfabric analyses applied to the Witwatersrand gold- and uranium-bearing conglomerates: constraints on the provenance and post-depositional modification of rock and ore components , 2002 .

[13]  M. Frezzotti Silicate-melt inclusions in magmatic rocks: applications to petrology , 2001 .

[14]  A. V. D. Kerkhof,et al.  Fluid inclusion petrography , 2001 .

[15]  A. Berger,et al.  Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL- and SEM-CC-imaging , 2009, Mineralogical Magazine.

[16]  U. Zinkernagel Cathodoluminescence of quartz and its application to sandstone petrology , 1978 .

[17]  J. Webster,et al.  Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study , 2005 .

[18]  U. Kempe,et al.  Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregte and Tsakhir (Mongolian Altai): Indications from a combined CL-SEM study , 1999, Mineralogical Magazine.

[19]  Richard P. Taylor,et al.  Petrological and geochemical characteristics of the Pleasant Ridge zinnwaldite-topaz granite, southern New Brunswick, and comparisons with other topaz-bearing felsic rocks , 1992 .

[20]  G. Watt,et al.  Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts , 1997 .

[21]  J. Touret Fluid inclusions, reviews in mineralogy, vol. 12: Edwin Roedder, 1984, Mineralogical Society of America, 644 p., U.S. $14 , 1985 .

[22]  Volker Lueders,et al.  Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite, stibnite, bournonite); metallogenic implications , 1996 .

[23]  N. Higgins Fluid inclusion evidence for the transport of tungsten by carbonate complexes in hydrothermal solutions , 1980 .

[24]  F. Bierlein,et al.  Mineral Deposit Research: Meeting the Global Challenge , 2005 .

[25]  A. Kent,et al.  Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana , 2006 .

[26]  J. R. O'neil,et al.  Stable isotope compositions of quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold- and uranium-bearing quartz pebble conglomerates , 1992 .

[27]  T. Monecke,et al.  Mathematical analysis of rare earth element patterns of fluorites from the Ehrenfriedersdorf tin deposit, Germany: evidence for a hydrothermal mixing process of lanthanides from two different sources , 2000 .

[28]  J. W. Hedenquist Melt Inclusions in Plutonic Rocks , 2007 .

[29]  M. Lespinasse,et al.  Identification of fluid inclusions in relation to their host microstructural domains in quartz by cathodoluminescence , 1992 .

[30]  W. Reimold,et al.  The significance of the Vredefort Dome for the thermal and structural evolution of the Witwatersrand Basin, South Africa , 1999 .

[31]  D. Hallbauer,et al.  Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography , 2004 .

[32]  F. Meyer,et al.  The nature of the Witwatersrand hinterland; conjectures on the source area problem , 1990 .

[33]  K. Bjørlykke,et al.  New evidence for the origin of quartz cements in hydrocarbon reservoirs revealed by oxygen isotope microanalyses , 1997 .

[34]  D. Krinsley,et al.  Provenance interpretation of quartz by scanning electron microscope–cathodoluminescence fabric analysis , 1997 .

[35]  R. Pankrath,et al.  Microdistribution of Al, Li, and Na in alpha quartz; possible causes and correlation with short-lived cathodoluminescence , 1992 .

[36]  U. Kempe,et al.  CL for characterizing quartz and trapped fluid inclusions in mesothermal quartz veins: Muruntau Au ore deposit, Uzbekistan , 2000, Mineralogical magazine.

[37]  D. Cherniak Diffusion in Quartz, Melilite, Silicate Perovskite, and Mullite , 2010 .

[38]  J. D. Blacic,et al.  Quartz: Anomalous Weakness of Synthetic Crystals , 1965, Science.

[39]  F. Meyer,et al.  A contribution to recent debate concerning epigenetic versus syngenetic mineralization processes in the Witwatersrand Basin , 1991 .

[40]  W. Dennen Stoichiometric substitution in natural quartz , 1966 .

[41]  M. Reed,et al.  Scanning electron microscope–cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana , 2002 .

[42]  C. Onasch,et al.  Disequilibrium partitioning of oxygen isotopes associated with sector zoning in quartz , 1995 .

[43]  T. Pettke,et al.  Relationships between SEM-cathodoluminescence response and trace-element composition of hydrothermal vein quartz , 2005 .

[44]  H. Frimmel,et al.  Complex metasomatism of an Archean placer in the Witwatersrand Basin, South Africa; the Ventersdorp contact reef; a hydrothermal aquifer? , 1999 .

[45]  A. Müller,et al.  Evolution of rare-metal granitic magmas documented by quartz chemistry , 2009 .

[46]  J. A. Weil A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz , 1984 .

[47]  K. Ramseyer,et al.  Factors influencing short-lived blue cathodoluminescence of alpha -quartz , 1990 .

[48]  T. Monecke,et al.  Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study , 2002 .

[49]  D. Krinsley,et al.  Is Quartz Cathodoluminescence Color a Reliable Provenance Tool? A Quantitative Examination , 2002 .

[50]  A. Fowler,et al.  Oscillatory zoning in minerals; a common phenomenon , 1996 .

[51]  A. Müller,et al.  Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits , 2010 .

[52]  N. Higgins Wolframite deposition in a hydrothermal vein system; the Grey River tungsten prospect, Newfoundland, Canada , 1985 .

[53]  I. Henderson,et al.  Thrust-fracture network and hydrothermal gold mineralization: Witwatersrand Basin, South Africa , 1999, Geological Society, London, Special Publications.

[54]  J. Götze,et al.  Progress in application of cathodoluminescence (CL) in sedimentary petrology , 2003 .

[55]  L. Dengler,et al.  Effects of metamorphism on quartz cathodoluminescence , 1978 .

[56]  J. Götze,et al.  Quartz and silica as guide to provenance in sediments and - sedimentary rocks , 2000 .

[57]  T. Pettke,et al.  Direct Analysis of Ore-Precipitating Fluids: Combined IR Microscopy and LA-ICP-MS Study of Fluid Inclusions in Opaque Ore Minerals , 2010 .

[58]  R. Goldstein,et al.  Fluid inclusions in sedimentary and diagenetic systems , 2001 .

[59]  R. Cook,et al.  The mechanisms of the formation and growth of water bubbles and associated dislocation loops in synthetic quartz , 1983 .

[60]  T. Monecke,et al.  Trace element content of quartz from the Ehrenfriedersdorf Sn-W deposit, Germany: Results of an acid-wash procedure , 2005 .

[61]  Günter Hösel Das Zinnerz-Lagerstättengebiet Ehrenfriedersdorf/Erzgebirge , 2011 .

[62]  W. Reimold,et al.  A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and Granophyre , 1996 .

[63]  Harvey Blatt,et al.  Perspectives; Oxygen isotopes and the origin of quartz , 1987 .

[64]  D. Groves,et al.  The formation and preservation of the Witwatersrand Goldfields, the world's largest gold province , 2005 .

[65]  H. Frimmel,et al.  Witwatersrand gold particle chemistry matches model of metamorphosed, hydrothermally altered placer deposits , 1997 .

[66]  K. Panter,et al.  Comparison of fluid inclusions in coexisting (cogenetic?) wolframite, cassiterite, and quartz from St. Michael's Mount and Cligga Head, Cornwall, England☆ , 1990 .

[67]  A. Müller,et al.  Trace elements in quartz: a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study , 2003 .

[68]  G. N. Phillips,et al.  Hydrothermal Replacement Model for Witwatersrand Gold , 2005 .

[69]  H. Frimmel,et al.  Morphology of Witwatersrand gold grains from the Basal Reef; evidence for their detrital origin , 1993 .

[70]  B. Charoy,et al.  Multistage Growth of a Rare-Element, Volatile-Rich Microgranite at Argemela (Portugal) , 1996 .

[71]  J. Doukhan,et al.  Plastic deformation of quartz single crystals , 1985 .

[72]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[73]  J. A. Weil A Review of the EPR Spectroscopy of the Point Defects in α-Quartz: The Decade 1982–1992 , 1993 .

[74]  I. Henderson,et al.  Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway , 2004 .

[75]  A. Agangi,et al.  Magma chamber dynamics in a silicic LIP revealed by quartz: the Mesoproterozoic Gawler Range Volcanics , 2011 .

[76]  U. Kempe,et al.  Fluid regime and ore formation in the tungsten(–yttrium) deposits of Kyzyltau (Mongolian Altai): evidence for fluid variability in tungsten–tin ore systems , 1999 .

[77]  M. Plötze,et al.  Defect structure and luminescence behaviour of agate – results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies , 1999, Mineralogical Magazine.

[78]  A. Campbell,et al.  Observation of fluid inclusions in wolframite from Panasqueira, Portugal , 1988 .

[79]  Yuanming Pan,et al.  NATURAL RADIATION-INDUCED DAMAGE IN QUARTZ. II. DISTRIBUTION AND IMPLICATIONS FOR URANIUM MINERALIZATION IN THE ATHABASCA BASIN, SASKATCHEWAN, CANADA , 2006 .

[80]  A. Campbell,et al.  Infrared fluid inclusion microthermometry on coexisting wolframite and quartz , 1987 .

[81]  E. Watson,et al.  Pre-eruption recharge of the Bishop magma system , 2007 .

[82]  T. Pettke,et al.  Cathodoluminescence properties and trace element signature of hydrothermal quartz: A fingerprint of growth dynamics , 2011 .

[83]  T. Pettke,et al.  Significance of trace elements in syntaxial quartz cement, Haushi Group sandstones, Sultanate of Oman , 2011 .

[84]  W. H. Blackburn,et al.  Aluminum in quartz as a geothermometer , 1970 .

[85]  I. Samson,et al.  Fluid inclusions : analysis and interpretation , 2003 .

[86]  Yuanming Pan,et al.  NATURAL RADIATION-INDUCED DAMAGE IN QUARTZ. I. CORRELATIONS BETWEEN CATHODOLUMINENCE COLORS AND PARAMAGNETIC DEFECTS , 2005 .

[87]  A. Kronz,et al.  Trace element chemistry and textures of quartz during the magmatic hydrothermal transition of Oslo Rift granites , 2009, Mineralogical Magazine.

[88]  M. Plötze,et al.  Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz – a review , 2001 .

[89]  M. Ploetze,et al.  Investigation of trace-element distribution in detrital quartz by Electron Paramagnetic Resonance (EPR) , 1997 .

[90]  Y. Yamaguchi,et al.  Successive zoning of Al and H in hydrothermal vein quartz , 2005 .

[91]  H. Lowers,et al.  Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation , 2008 .

[92]  T. Vennemann,et al.  Oxygen isotope sector zoning in natural hydrothermal quartz , 2009, Mineralogical Magazine.