Essential Properties of Fibres for Composite Applications

In this chapter, essential properties of fibres required for fabricating good performance composites are presented. Fundamental aspects of these properties and principles of their characterization techniques are discussed. Firstly, the geometrical aspects of fibres (for short and endless fibres) are described. The second part deals with the different types of structures in fibres with respect to molecular orientation mostly responsible for anisotropy of fibres. In the third part, the mechanical properties (especially tensile properties) and failure mechanisms for different types of fibres are discussed and correlated to the structure of the fibres. The following part is concerned with the surface of fibres, which is responsible for the interaction of the fibres with the matrix material in composites and has a large influence on the wetting behavior and adhesion to matrix materials. In the last parts, further physical properties (heat capacity, thermal conductivity, thermomechanical properties and electrical conductivity) and the durability of fibres are described.

[1]  Karl Schulte,et al.  Dielectric properties of epoxy/short carbon fiber composites , 2010 .

[2]  H. G. Bruil,et al.  The determination of contact angles of aqueous surfactant solutions on powders , 1974 .

[3]  Gottfried W. Ehrenstein,et al.  Faserverbund-Kunststoffe: Werkstoffe - Verarbeitung - Eigenschaften , 2006 .

[4]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[5]  L. Ley,et al.  Photoemission in Solids I , 1978 .

[6]  T. Gries,et al.  Extrusion of CNT-modified Polymers with Low Viscosity - Influence of Crystallization and CNT Orientation on the Electrical Properties , 2013 .

[7]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[8]  Zhanjun Wu,et al.  The effect of triangle-shape carbon fiber on the flexural properties of the carbon fiber reinforced plastics , 2012 .

[9]  R. Pethrick,et al.  Enhancement of the surface electrical conductivity of thermoplastic composite matrices , 2012 .

[10]  D. J. Johnson,et al.  Strength-structure relationships in PAN-based carbon fibres , 1983 .

[11]  Yaodong Liu,et al.  Preparation of low density hollow carbon fibers by bi-component gel-spinning method , 2015, Journal of Materials Science.

[12]  T. Gries,et al.  Thermal Analysis of Phase Transitions and Crystallization in Polymeric Fibers , 2013 .

[13]  Tanaka,et al.  Tensile and Flexural Properties of Single Carbon Fibres , 2009 .

[14]  M. Alcock,et al.  A comparative study on natural fibre density measurement , 2009 .

[15]  M. Gu,et al.  Thermal conductivity measurement of an individual fibre using a T type probe method , 2009 .

[16]  H. Schürmann Konstruieren mit Faser-Kunststoff-Verbunden , 2005 .

[17]  Byung-Joo Kim,et al.  Carbon Fibers and Their Composites , 2015 .

[18]  F. Fowkes ATTRACTIVE FORCES AT INTERFACES , 1964 .

[19]  Yoshio Takahashi Latent heat measurement by DSC with sapphire as standard material , 1985 .

[20]  F. Himpsel Photoemission from solids , 1983 .

[21]  Lawrence T. Drzal,et al.  Fibre-matrix adhesion and its relationship to composite mechanical properties , 1993 .

[22]  S. Yariv,et al.  Physical Chemistry of Surfaces , 1979 .

[23]  S. Phoenix,et al.  Interfacial Shear Strength Studies Using the Single-Filament-Composite Test. I: Experiments on Graphite Fibers in Epoxy , 1989 .

[24]  Markus G. R. Sause,et al.  Influence of plastic deformation on single-fiber push-out tests of carbon fiber reinforced epoxy resin , 2015 .

[25]  R. Young,et al.  Analysis of the single-fibre pull-out test by means of Raman spectroscopy: Part II. Micromechanics of deformation for an aramid/epoxy system , 1995 .

[26]  Markus G. R. Sause,et al.  Influence of residual thermal stress in carbon fiber-reinforced thermoplastic composites on interfacial fracture toughness evaluated by cyclic single-fiber push-out tests , 2014 .

[27]  Per Stenius,et al.  Contact angles, work of adhesion, and interfacial tensions at a dissolving Hydrocarbon surface , 1987 .

[28]  W. Michaeli,et al.  Faserbündel-Pull-out-Versuch , 1993 .

[29]  D. Salem Structure Formation in Polymeric Fibers , 2001 .

[30]  C. Andersen,et al.  Ion Microprobe Mass Analyzer , 1972, Science.

[31]  Stephan Hüfner,et al.  Photoelectron Spectroscopy: Principles and Applications , 2010 .

[32]  E. W. Washburn The Dynamics of Capillary Flow , 1921 .

[33]  Weidong Yu,et al.  Characterization of prickle tactile discomfort properties of different textile single fibers using an axial fiber-compression-bending analyzer (FICBA) , 2015 .

[34]  I. Koch,et al.  Fatigue Testing of Carbon Fibre-reinforced Polymers under VHCF Loading , 2012 .

[35]  I. Alig,et al.  Stochastic temperature modulation : A new technique in temperature-modulated DSC , 2006 .

[36]  F. Pacheco-Torgal,et al.  Influence of acrylic fibers geometry on the mechanical performance of fiber‐cement composites , 2012 .

[37]  H. W. Werner,et al.  Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends , 1987 .

[38]  J. Karger‐Kocsis,et al.  Surface energetics of carbon fibers and its effects on the mechanical performance of CF/EP composites , 1996 .

[39]  T. Gries,et al.  Spinnability and Characteristics of Polyvinylidene Fluoride (PVDF)-based Bicomponent Fibers with a Carbon Nanotube (CNT) Modified Polypropylene Core for Piezoelectric Applications , 2013, Materials.

[40]  Stefanie Feih,et al.  Testing Procedure for the Single Fiber Fragmentation Test , 2004 .