Adaptive model for a variable load in a distribution network using a neuro-fuzzy system

Distributed generation systems are a suitable alternative for the rational use of energy. One of important aspect in these systems corresponds to the modeling of the transmission system and its loads which are usually variable. Neuro-fuzzy systems are an alternative for modeling and control of complex systems, allowing the adaptability of their parameters using data. This article shows the modeling of a node in a distribution system considering in adaptive way the load variability during a time interval.

[1]  Li-Xin Wang,et al.  A Course In Fuzzy Systems and Control , 1996 .

[2]  Michael G. Pollitt,et al.  Distributed Generation: Opportunities for Distribution Network Operators, Wider Society and Generators , 2015 .

[3]  Fabio Emiro Sierra Vargas,et al.  Modelo basado en redes neuronales para predecir las emisiones en un motor diésel que opera con mezclas de biodiésel de higuerilla , 2012 .

[4]  Xu Rong,et al.  A review on distributed energy resources and MicroGrid , 2008 .

[5]  Yan Wei LAYER-BY-LAYER BACK/FORWARD SWEEP METHOD FOR RADIAL DISTRIBUTION LOAD FLOW , 2003 .

[6]  Lina Morales Laguado,et al.  Propuesta de un sistema neuro-DBR y su aplicación en la predicción de la serie de tiempo de Lorenz , 2010 .

[7]  Zhiliang Wu,et al.  Convergence analysis on the power flow methods for distribution networks with small impedance branches , 2008, 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies.

[8]  Tao Yu,et al.  Nonlinear PID control design for improving stability of micro-turbine systems , 2008, 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies.

[9]  Robert Babuska,et al.  Fuzzy Systems, Modeling and Identification , 1998 .

[10]  Garrido Bullón,et al.  Identificación, estimación y control de sistemas no-lineales mediante RGO , 2000 .

[11]  Javier Sedano Franco,et al.  Identificación de sistemas no lineales mediante redes neuronales artificiales , 2007 .

[12]  Mahdi Zolfaghari,et al.  Dynamic Modeling and Simulation of Microturbine Generating System for Stability Analysis in Microgrid Networks , 2014 .

[13]  R.H. Lasseter,et al.  Microgrid: a conceptual solution , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[14]  Nikos D. Hatziargyriou,et al.  Centralized Control for Optimizing Microgrids Operation , 2008 .

[15]  Roger C. Dugan,et al.  Planning for distributed generation , 2001 .