Special Functions and Orthogonal Polynomials

1. Orientation 2. Gamma, beta, zeta 3. Second-order differential equations 4. Orthogonal polynomials on an interval 5. The classical orthogonal polynomials 6. Semiclassical orthogonal polynomials 7. Asymptotics of orthogonal polynomials: two methods 8. Confluent hypergeometric functions 9. Cylinder functions 10. Hypergeometric functions 11. Spherical functions 12. Generalized hypergeometric functions G-functions 13. Asymptotics 14. Elliptic functions 15. Painleve transcendents Appendix A. Complex analysis Appendix B. Fourier analysis References Index.

[1]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[2]  Ilpo Laine,et al.  Painlev'e di erential equations in the complex plane , 2002 .

[3]  V. B. Uvarov,et al.  Classical Orthogonal Polynomials of a Discrete Variable , 1991 .

[4]  N. J. Fine,et al.  Basic Hypergeometric Series and Applications , 1988 .

[5]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[6]  Mizan Rahman,et al.  On classical orthogonal polynomials , 1995 .

[7]  H. Mellin,et al.  Abriß einer einheitlichen Theorie der Gamma- und der hypergeometrischen Funktionen , 1910 .

[8]  J. Stillwell Mathematics and Its History , 2020, Undergraduate Texts in Mathematics.

[9]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[10]  Willard Miller,et al.  Symmetry and Separation of Variables , 1977 .

[11]  Willard Miller,et al.  Lie Theory and Special Functions , 1969 .

[12]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[13]  Doron S. Lubinsky,et al.  Orthogonal Polynomials for Exponential Weights , 2001 .

[14]  H. A. Kramers,et al.  Wellenmechanik und halbzahlige Quantisierung , 1926 .

[15]  Kalyan Chakraborty,et al.  Vistas of special functions , 2007 .

[16]  Yu Lin,et al.  Global asymptotics of the discrete Chebyshev polynomials , 2012, Asymptot. Anal..

[17]  M. Seaton Coulomb functions for attractive and repulsive potentials and for positive and negative energies , 2002 .

[18]  R. Askey Continuous Hahn polynomials , 1985 .

[19]  A. Polishchuk Abelian Varieties, Theta Functions and the Fourier Transform , 2003 .

[20]  J. López,et al.  Asymptotic relations between the Hahn-type polynomials and Meixner-Pollaczek, Jacobi, Meixner and Krawtchouk polynomials , 2008 .

[21]  I. N. Sneddon,et al.  Special Functions of Mathematical Physics and Chemistry , 1957 .

[22]  L. Brillouin,et al.  Remarques sur la mécanique ondulatoire , 1926 .

[23]  Xin Zhou The Riemann-Hilbert problem and inverse scattering , 1989 .

[24]  W. Gordon Über den Stoß zweier Punktladungen nach der Wellenmechanik , 1928 .

[25]  Pedro J. Pagola,et al.  Asymptotic Approximations between the Hahn-Type Polynomials and Hermite, Laguerre and Charlier Polynomials , 2008 .

[26]  C. Fox Integral transforms based upon fractional integration , 1963 .

[27]  M. Stone Linear transformations in Hilbert space and their applications to analysis , 1932 .

[28]  J. Wimp Recursion formulae for hypergeometric functions , 1968 .

[29]  Antoni Wawrzynczyk,et al.  Group Representations and Special Functions , 1984 .

[30]  Ben Silver,et al.  Elements of the theory of elliptic functions , 1990 .

[31]  A. M. Mathai,et al.  Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences , 1973 .

[32]  E. B. Christoffel,et al.  Über die Gaußische Quadratur und eine Verallgemeinerung derselben. , 1858 .

[33]  Benjamin Wilson A treatise on electricity , 1973 .

[34]  T. Stieltjes Sur les polynômes de Legendre , 1890 .

[35]  P. Appell,et al.  Principes de la théorie des fonctions elliptiques et applications , 2010 .

[36]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[37]  Zoltán Sasvári,et al.  An Elementary Proof of Binet's Formula for the Gamma Function , 1999 .

[38]  Vilmos Totik,et al.  General Orthogonal Polynomials , 1992 .

[39]  Yet another proof of the addition formula for Jacobi polynomials , 1977 .

[40]  C. Jacobi,et al.  Theorie der elliptischen Funktionen aus den Eigenschaften der Thetareihen abgeleitet , 2022 .

[41]  S. Patterson An Introduction to the Theory of the Riemann Zeta-Function , 1988 .

[42]  I. Gohberg,et al.  Factorization of Matrix Functions and Singular Integral Operators , 1980 .

[43]  Harold M. Edwards,et al.  Riemann's Zeta Function , 1974 .

[44]  F. Olver,et al.  Second-order linear differential equations with two turning points , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[45]  J. Fourier,et al.  Mémoire sur la théorie analytique de la chaleur , 2013 .

[46]  T. Miwa Painlevé Property of Monodromy Preserving Deformation Equations and the Analyticity of τ Functions , 1981 .

[47]  A. R. Forsyth,et al.  A Treatise on Differential Equations , 1903, Nature.

[48]  Carl Friedrich Gauss METHODUS NOVA INTEGRALIUM VALORES PER APPROXIMATIONEM INVENIENDI , 2011 .

[49]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[50]  A. A. Maradudin,et al.  Tables of Higher Functions , 1960 .

[51]  J. Dieudonné,et al.  Abrégé d'histoire des mathématiques : 1700-1900 , 1978 .

[52]  Richard Beals,et al.  Meijer G-functions: a gentle introduction , 2013 .

[53]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[54]  É. Christoffel,et al.  Sur une classe particulière de fonctions entières et de fractions continues , 2022 .

[55]  Annie A. M. Cuyt,et al.  Handbook of Continued Fractions for Special Functions , 2008 .

[56]  Andrei Zelevinsky,et al.  Generalized Euler integrals and A-hypergeometric functions , 1990 .

[57]  G. L. Dirichlet Sur les séries dont le terme général dépend de deux angles, et qui servent à exprimer des fonctions arbitraires entre des limites donnée. , 1837 .

[58]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[59]  On Jacobi and continuous Hahn polynomials , 1994, math/9409230.

[60]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[61]  I. G. MacDonald,et al.  Symmetric Functions and Orthogonal Polynomials , 1998 .

[62]  Arak M. Mathai,et al.  The H-Function , 2010 .

[63]  N. Temme Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .

[64]  La fonction hypergéométrique , 1937 .

[65]  A. Bobenko,et al.  Painleve Equations in the Differential Geometry of Surfaces , 2001 .

[66]  Edmund Taylor Whittaker An expression of certain known functions as generalized hypergeometric functions , 1903 .

[67]  Roderick Wong,et al.  Asymptotic Expansion of the Krawtchouk Polynomials and their Zeros , 2004 .

[68]  T. W. Chaundy,et al.  EXPANSIONS OF APPELL'S DOUBLE HYPERGEOMETRIC FUNCTIONS , 1940 .

[69]  Jian-Ming Jin,et al.  Computation of special functions , 1996 .

[70]  G. N. Watson Bessel Functions and Kapteyn Series , 1917 .

[71]  P. Deift,et al.  Asymptotics for the painlevé II equation , 1995 .

[72]  Lun Zhang,et al.  Global asymptotics of Hermite polynomials via Riemann-Hilbert approach , 2007 .

[73]  Walter Van Assche,et al.  Asymptotics for Orthogonal Polynomials , 1987 .

[74]  V. B. Uvarov,et al.  Special Functions of Mathematical Physics: A Unified Introduction with Applications , 1988 .

[75]  W. Wasow Asymptotic expansions for ordinary differential equations , 1965 .

[76]  E. T. Copson,et al.  An introduction to the theory of functions of a complex variable , 1950 .

[77]  T. Stieltjes Recherches sur les fractions continues , 1995 .

[78]  W. Assche,et al.  Orthogonal polynomials and special functions : Leuven 2002 , 2003 .

[79]  A. Wiles Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .

[80]  F. L. Yost,et al.  Coulomb Wave Functions in Repulsive Fields , 1936 .

[81]  J. R. Higgins Completeness and basis properties of sets of special functions: Bibliography , 1977 .

[82]  James A. Wilson Asymptotics for the 4 F 3 polynomials , 1991 .

[83]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[84]  George Gabriel Stokes,et al.  Mathematical and Physical Papers: 1857. On the Discontinuity of Arbitrary Constants which appear in Divergent Developments , 2009 .

[85]  T. Stieltjes,et al.  Quelques recherches sur la théorie des quadratures dites mécaniques , 1884 .

[86]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[87]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[88]  C. G. van der Laan,et al.  Calculation of special functions: the gamma function, the exponential integrals and error-like functions , 1984 .

[89]  B. Eynard,et al.  Random matrices. , 2015, 1510.04430.

[90]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[91]  Arno B. J. Kuijlaars,et al.  The Asymptotic Zero Distribution of Orthogonal Polynomials with Varying Recurrence Coefficients , 1999 .

[92]  S. I︠u︡. Slavi︠a︡nov,et al.  Special Functions: A Unified Theory Based on Singularities , 2000 .

[93]  J. Leray,et al.  Calcul de la solution élémentaire de l'opérateur d'Euler-Poisson-Darboux et de l'opérateur de Tricomi-Clairaut, hyperbolique, d'ordre 2 , 1971 .

[94]  E. Copson On the Riemann-Green function , 1957 .

[95]  P. Debye,et al.  Näherungsformeln für die Zylinderfunktionen für große Werte des Arguments und unbeschränkt veränderliche Werte des Index , 1909 .

[96]  Fritz Oberhettinger,et al.  Tables of Fourier Transforms and Fourier Transforms of Distributions , 1990 .

[97]  D. Sattinger,et al.  Integrable systems and isomonodromy deformations , 1993, solv-int/9801010.

[98]  P. Painlevé,et al.  Mémoire sur les équations différentielles dont l'intégrale générale est uniforme , 1900 .

[99]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[100]  D. F. Lawden Elliptic Functions and Applications , 1989 .

[101]  D. A. Leonard Orthogonal Polynomials, Duality and Association Schemes , 1982 .

[102]  M.N.H. Abel Recherches sur les fonctions elliptiques. , 1827 .

[103]  H. Airault,et al.  Rational solutions of Painleve equations , 1979 .

[104]  C. Chester,et al.  An extension of the method of steepest descents , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[105]  D. Zwillinger Handbook of differential equations , 1990 .

[106]  Roderick Wong,et al.  Global asymptotic expansions of the Laguerre polynomials—a Riemann–Hilbert approach , 2008, Numerical Algorithms.

[107]  A. Ivic,et al.  The Riemann zeta-function : theory and applications , 2003 .

[108]  Hypergeometric functions, how special are they? , 2014 .

[109]  René Garnier,et al.  Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1912 .

[110]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[111]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[112]  Orrin Frink,et al.  A new class of orthogonal polynomials: The Bessel polynomials , 1949 .

[113]  D. Stanton Orthogonal Polynomials and Chevalley Groups , 1984 .

[114]  D. H. Griffel,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[115]  A. Kolmogorov,et al.  Mathematics of the 19th century: function theory according to Chebyshev, ordinary differential equations, calculus of variations, theory of finite differences , 1998 .

[116]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[117]  C. W. Clenshaw,et al.  The special functions and their approximations , 1972 .

[118]  J. Meixner,et al.  Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion , 1934 .

[119]  Willi-Hans Steeb,et al.  Nonlinear Evolution Equations and Painleve Test , 1988 .

[120]  K. Aomoto,et al.  Jacobi polynomials associated with Selberg integrals , 1987 .

[121]  I︠u︡. A Brychkov Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas , 2008 .

[122]  A. Laforgia Further inequalities for the gamma function , 1984 .

[123]  E. Artin,et al.  The Gamma Function , 1964 .

[124]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[125]  R. Wong,et al.  Uniform Asymptotic Expansions for the Discrete Chebyshev Polynomials , 2011, 1110.2839.

[126]  Felix Klein,et al.  Vorlesungen uber die Entwicklung der Mathematik im 19. Jahrhundert , 1967 .

[127]  J. Dieudonne,et al.  Special Functions and Linear Representations of Lie Groups , 1980 .

[128]  V. Varadarajan,et al.  Linear meromorphic differential equations: A modern point of view , 1996 .

[129]  A. Sommerfeld Mathematische Theorie der Diffraction , 1896 .

[130]  X.-S. Wang,et al.  Asymptotics of Orthogonal Polynomials via Recurrence Relations , 2011, 1101.4371.

[131]  W. Rheinboldt,et al.  Generalized hypergeometric functions , 1968 .

[132]  Francisco Marcellán,et al.  Orthogonal Polynomials and Special Functions: Computation and Applications , 2006 .

[133]  E. Kummer,et al.  Über die hypergeometrische Reihe . , 1836 .

[134]  Mourad E. H. Ismail,et al.  Classical and Quantum Orthogonal Polynomials in One Variable , 2005 .

[135]  Peter D. Miller,et al.  Discrete orthogonal polynomials: Asymptotics and applications , 2007 .

[136]  Hoene-Wroński Józef Maria Réfutation de la théorie des fonctions analytiques de Lagrange par , 1812 .

[137]  Eugene P. Wigner,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1966 .

[138]  D. Dai,et al.  Plancherel–Rotach Asymptotic Expansion for Some Polynomials from Indeterminate Moment Problems , 2013, Constructive Approximation.

[139]  Richard Askey,et al.  A Set of Orthogonal Polynomials That Generalize the Racah Coefficients or 6 - j Symbols. , 1979 .

[140]  Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe. , 1859 .

[141]  H. Li,et al.  Asymptotic expansions for second-order linear difference equations , 1992 .

[142]  William Thomson,et al.  I. On the waves produced by a single impulse in water of any depth, or in a dispersive medium , 1887, Proceedings of the Royal Society of London.

[143]  C. Fox The $G$ and $H$ functions as symmetrical Fourier kernels , 1961 .

[144]  Studies in the history of mathematics , 1987 .

[145]  Z. Wang,et al.  Asymptotic expansions for second-order linear difference equations with a turning point , 2003, Numerische Mathematik.

[146]  An introduction to the theory of elliptic functions , 1923 .

[147]  O. Perron,et al.  Die Lehre von den Kettenbrüchen , 2013 .

[148]  Alexander Varchenko Special Functions, Kz Type Equations, and Representation Theory , 2002 .

[149]  S. Ole Warnaar,et al.  The importance of the Selberg integral , 2007, 0710.3981.

[150]  Eugene P. Wigner,et al.  Special Functions. A Group Theoretic Approach , 1969 .

[151]  Eugène Catalan,et al.  Sur les fractions continues , 1845 .

[152]  D. Levi,et al.  Painlevé transcendents : their asymptotics and physical applications , 1992 .

[153]  G. Kempf Complex abelian varieties and theta functions , 1990 .

[154]  E. Hobson The Theory of Spherical and Ellipsoidal Harmonics , 1955 .

[155]  G. Green An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism , 2008, 0807.0088.

[156]  E. L. Ince Ordinary differential equations , 1927 .

[157]  S. P. Hastings,et al.  A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation , 1980 .

[158]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[159]  F. Klein,et al.  Vorlesungen über die hypergeometrische Funktion: Gehalten An Der Universität Göttingen Im Wintersemester 1893/94 , 1981 .

[160]  C. S. Gardner,et al.  Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .

[161]  Richard Askey,et al.  A century of mathematics in America , 1988 .

[162]  Gérard Duchamp,et al.  On certain non-unique solutions of the Stieltjes moment problem , 2009, Discret. Math. Theor. Comput. Sci..

[163]  C. Jacobi,et al.  Fundamenta nova theoriae functionum ellipticarum , 1829 .

[164]  A. Erdélyi,et al.  On the Finite Difference Analogue of Rodrigues' Formula , 1952 .

[165]  B. C. Carlson Special functions of applied mathematics , 1977 .

[166]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997, Grundlehren der mathematischen Wissenschaften.

[167]  Athanassios S. Fokas,et al.  Painleve Transcendents: The Riemann-hilbert Approach , 2006 .

[168]  Paul Erdös,et al.  On Interpolation. III. Interpolatory Theory of Polynomials , 1940 .

[169]  V. Prasolov,et al.  Elliptic functions and elliptic integrals , 1997 .

[170]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[171]  Zhen Wang,et al.  Linear difference equations with transition points , 2004, Math. Comput..

[172]  B. Simon The Classical Moment Problem as a Self-Adjoint Finite Difference Operator , 1998, math-ph/9906008.

[173]  Gregor Wentzel,et al.  Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik , 1926 .

[174]  C. Sturm,et al.  Mémoire Sur les Equations différentielles linéaires du second ordre , 2009 .

[175]  Vladimir Retakh,et al.  General hypergeometric systems of equations and series of hypergeometric type , 1992 .

[176]  W. J. Sternberg The theory of potential and spherical harmonics , 1946 .

[177]  Sergei K. Suslov,et al.  The Hahn and Meixner polynomials of an imaginary argument and some of their applications , 1985 .

[178]  Allan M. Krall,et al.  Hilbert space, boundary value problems, and orthogonal polynomials , 2002 .

[179]  N. Nielsen Handbuch der Theorie der Cylinderfunktionen , 1904 .

[180]  R. Wong,et al.  On the Asymptotics of the Meixner—Pollaczek Polynomials and Their Zeros , 2000 .

[181]  George D. Birkhoff,et al.  Analytic theory of singular difference equations , 1933 .

[182]  E. Hille,et al.  Ordinary di?erential equations in the complex domain , 1976 .

[183]  P. Boutroux,et al.  Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre (suite) , 1913 .

[184]  M. Hutton La Theorie des Fonctions de Bessel (exposee en vue de ses applications a la Physique Mathematique) , 1956, The Mathematical Gazette.

[185]  B. G. Korenev Bessel Functions and Their Applications , 2002 .

[186]  C. Meijer Expansion Theorems for the G-Function. III , 1953 .

[187]  J. Plemelj Riemannsche Funktionenscharen mit gegebener Monodromiegruppe , 1908 .

[188]  Walter Gautschi,et al.  Leonhard Euler: His Life, the Man, and His Works , 2008, SIAM Rev..

[189]  F. Olver Asymptotics and Special Functions , 1974 .

[190]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[191]  Jacques Dutka,et al.  The early history of the factorial function , 1991 .

[192]  C. Gauss,et al.  DISQUISITIONES GENERALES CIRCA SERIEM INFINITAM , 2011 .

[193]  James B. Seaborn,et al.  Hypergeometric Functions and Their Applications , 1991 .

[194]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[195]  Ueber die Integration der partiellen Differentialgleichung: $$\frac{{\partial ^2 u}}{{\partial x^2 }} + \frac{{\partial ^2 u}}{{\partial y^2 }} + k^2 u = 0.$$ , 1869 .

[196]  George Esq. Green,et al.  On the Motion of Waves in a variable canal of small depth and width , 1838 .

[197]  W. Gautschi Some Elementary Inequalities Relating to the Gamma and Incomplete Gamma Function , 1959 .

[198]  P. Turán,et al.  On the zeros of the polynomials of Legendre , 1950 .

[199]  E. H. Neville,et al.  Jacobian Elliptic Functions , 1952, The Mathematical Gazette.

[200]  T. Mark Dunster Uniform Asymptotic Expansions for Charlier Polynomials , 2001, J. Approx. Theory.

[201]  Replica field theories, painlevé transcendents, and exact correlation functions. , 2002, Physical review letters.

[202]  Hypergeometrische Funktionen zweier Veränderlichen , 1931 .

[203]  Wolfram Koepf,et al.  Hypergeometric Summation : An Algorithmic Approach to Summation and Special Function Identities , 1998 .

[204]  M. Roberts Sur quelques théorémés d’algébre , 1861 .

[205]  Claus Müller Analysis of Spherical Symmetries in Euclidean Spaces , 1997 .

[206]  James A. Wilson Some Hypergeometric Orthogonal Polynomials , 1980 .

[207]  A. Russell,et al.  XLVIII. The effective resistance and inductance of a concentric main, and methods of computing the ber and bei and allied functions , 1909 .

[208]  S. Bochner,et al.  Über Sturm-Liouvillesche Polynomsysteme , 1929 .

[209]  W. N. Bailey,et al.  Generalized hypergeometric series , 1935 .

[210]  Larry C. Andrews,et al.  Special Functions Of Mathematics For Engineers , 2022 .

[211]  Y. Motohashi Spectral Theory of the Riemann Zeta-Function , 1997 .

[212]  H. Buchholz,et al.  The Confluent Hypergeometric Function: with Special Emphasis on its Applications , 1969 .

[213]  E. W. Barnes A New Development of the Theory of the Hypergeometric Functions , 1908 .

[214]  J. Horn,et al.  Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen , 1889 .

[215]  Francisco Marcellán,et al.  On the “Favard theorem” and its extensions , 2001 .

[216]  Appel Sur les fonctions hypergéométriques de deux variables , 1882 .

[217]  R. Wong,et al.  GLOBAL ASYMPTOTICS OF THE HAHN POLYNOMIALS , 2012, 1210.2359.

[218]  P. L. Sachdev,et al.  A Compendium on Nonlinear Ordinary Differential Equations , 1996 .

[219]  J. B. McLeod,et al.  Application of Uniform Asymptotics to the Second Painlevé Transcendent , 1996 .

[220]  C. Tracy,et al.  Painlevé functions of the third kind , 1977 .

[221]  H. Schmidt Über Existenz und Darstellung impliziter Funktionen bei singulären Anfangswerten , 1938 .

[222]  Jacques Dutka The early history of the hypergeometric function , 1984 .

[223]  T. MacRobert Spherical harmonics : an elementary treatise on harmonic functions , 1927 .

[224]  Elna Browning McBride Obtaining Generating Functions , 1971 .

[225]  E. J. Routh On some Properties of certain Solutions of a Differential Equation of the Second Order , 1884 .

[226]  R. Prosser On the Kummer Solutions of the Hypergeometric Equation , 1994 .

[227]  Lucy Joan Slater Confluent Hypergeometric Functions , 1960 .

[228]  J. Fourier Théorie analytique de la chaleur , 2009 .

[229]  H. Schwarz,et al.  Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt. , 1873 .

[230]  George D. Birkhoff,et al.  Formal theory of irregular linear difference equations , 1930 .

[231]  A. Wiles,et al.  Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .

[232]  G. Darboux,et al.  Mémoire sur l'approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série. , 1878 .

[233]  Géza Freud,et al.  Orthogonal Polynomials , 1971, Series and Products in the Development of Mathematics.

[234]  C. Tracy,et al.  Painlevé Functions in Statistical Physics , 2009, 0912.2362.

[235]  É. Goursat,et al.  Sur l'équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique , 1881 .

[236]  B. Dwork Generalized Hypergeometric Functions , 1990 .

[237]  P. Davis Leonhard Euler's Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz , 1959 .

[238]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[239]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[240]  Harry Hochstadt,et al.  The functions of mathematical physics , 1972 .

[241]  Sergey Khrushchev Orthogonal Polynomials and Continued Fractions: From Euler's Point of View , 2008 .

[242]  L. Lichtenstein,et al.  Spektraltheorie der unendlichen Matrizen : Einführung in den analytischen Apparat der Quantenmechanik , 1929 .

[243]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[244]  Mark J. Ablowitz,et al.  Exact Linearization of a Painlevé Transcendent , 1977 .