Special Functions and Orthogonal Polynomials
暂无分享,去创建一个
[1] Rene F. Swarttouw,et al. Hypergeometric Orthogonal Polynomials , 2010 .
[2] Ilpo Laine,et al. Painlev'e di erential equations in the complex plane , 2002 .
[3] V. B. Uvarov,et al. Classical Orthogonal Polynomials of a Discrete Variable , 1991 .
[4] N. J. Fine,et al. Basic Hypergeometric Series and Applications , 1988 .
[5] R. Askey. Orthogonal Polynomials and Special Functions , 1975 .
[6] Mizan Rahman,et al. On classical orthogonal polynomials , 1995 .
[7] H. Mellin,et al. Abriß einer einheitlichen Theorie der Gamma- und der hypergeometrischen Funktionen , 1910 .
[8] J. Stillwell. Mathematics and Its History , 2020, Undergraduate Texts in Mathematics.
[9] E. Coddington,et al. Theory of Ordinary Differential Equations , 1955 .
[10] Willard Miller,et al. Symmetry and Separation of Variables , 1977 .
[11] Willard Miller,et al. Lie Theory and Special Functions , 1969 .
[12] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[13] Doron S. Lubinsky,et al. Orthogonal Polynomials for Exponential Weights , 2001 .
[14] H. A. Kramers,et al. Wellenmechanik und halbzahlige Quantisierung , 1926 .
[15] Kalyan Chakraborty,et al. Vistas of special functions , 2007 .
[16] Yu Lin,et al. Global asymptotics of the discrete Chebyshev polynomials , 2012, Asymptot. Anal..
[17] M. Seaton. Coulomb functions for attractive and repulsive potentials and for positive and negative energies , 2002 .
[18] R. Askey. Continuous Hahn polynomials , 1985 .
[19] A. Polishchuk. Abelian Varieties, Theta Functions and the Fourier Transform , 2003 .
[20] J. López,et al. Asymptotic relations between the Hahn-type polynomials and Meixner-Pollaczek, Jacobi, Meixner and Krawtchouk polynomials , 2008 .
[21] I. N. Sneddon,et al. Special Functions of Mathematical Physics and Chemistry , 1957 .
[22] L. Brillouin,et al. Remarques sur la mécanique ondulatoire , 1926 .
[23] Xin Zhou. The Riemann-Hilbert problem and inverse scattering , 1989 .
[24] W. Gordon. Über den Stoß zweier Punktladungen nach der Wellenmechanik , 1928 .
[25] Pedro J. Pagola,et al. Asymptotic Approximations between the Hahn-Type Polynomials and Hermite, Laguerre and Charlier Polynomials , 2008 .
[26] C. Fox. Integral transforms based upon fractional integration , 1963 .
[27] M. Stone. Linear transformations in Hilbert space and their applications to analysis , 1932 .
[28] J. Wimp. Recursion formulae for hypergeometric functions , 1968 .
[29] Antoni Wawrzynczyk,et al. Group Representations and Special Functions , 1984 .
[30] Ben Silver,et al. Elements of the theory of elliptic functions , 1990 .
[31] A. M. Mathai,et al. Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences , 1973 .
[32] E. B. Christoffel,et al. Über die Gaußische Quadratur und eine Verallgemeinerung derselben. , 1858 .
[33] Benjamin Wilson. A treatise on electricity , 1973 .
[34] T. Stieltjes. Sur les polynômes de Legendre , 1890 .
[35] P. Appell,et al. Principes de la théorie des fonctions elliptiques et applications , 2010 .
[36] R. Courant,et al. Methods of Mathematical Physics , 1962 .
[37] Zoltán Sasvári,et al. An Elementary Proof of Binet's Formula for the Gamma Function , 1999 .
[38] Vilmos Totik,et al. General Orthogonal Polynomials , 1992 .
[39] Yet another proof of the addition formula for Jacobi polynomials , 1977 .
[40] C. Jacobi,et al. Theorie der elliptischen Funktionen aus den Eigenschaften der Thetareihen abgeleitet , 2022 .
[41] S. Patterson. An Introduction to the Theory of the Riemann Zeta-Function , 1988 .
[42] I. Gohberg,et al. Factorization of Matrix Functions and Singular Integral Operators , 1980 .
[43] Harold M. Edwards,et al. Riemann's Zeta Function , 1974 .
[44] F. Olver,et al. Second-order linear differential equations with two turning points , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[45] J. Fourier,et al. Mémoire sur la théorie analytique de la chaleur , 2013 .
[46] T. Miwa. Painlevé Property of Monodromy Preserving Deformation Equations and the Analyticity of τ Functions , 1981 .
[47] A. R. Forsyth,et al. A Treatise on Differential Equations , 1903, Nature.
[48] Carl Friedrich Gauss. METHODUS NOVA INTEGRALIUM VALORES PER APPROXIMATIONEM INVENIENDI , 2011 .
[49] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[50] A. A. Maradudin,et al. Tables of Higher Functions , 1960 .
[51] J. Dieudonné,et al. Abrégé d'histoire des mathématiques : 1700-1900 , 1978 .
[52] Richard Beals,et al. Meijer G-functions: a gentle introduction , 2013 .
[53] A. Erdélyi,et al. Tables of integral transforms , 1955 .
[54] É. Christoffel,et al. Sur une classe particulière de fonctions entières et de fractions continues , 2022 .
[55] Annie A. M. Cuyt,et al. Handbook of Continued Fractions for Special Functions , 2008 .
[56] Andrei Zelevinsky,et al. Generalized Euler integrals and A-hypergeometric functions , 1990 .
[57] G. L. Dirichlet. Sur les séries dont le terme général dépend de deux angles, et qui servent à exprimer des fonctions arbitraires entre des limites donnée. , 1837 .
[58] N. Vilenkin. Special Functions and the Theory of Group Representations , 1968 .
[59] On Jacobi and continuous Hahn polynomials , 1994, math/9409230.
[60] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .
[61] I. G. MacDonald,et al. Symmetric Functions and Orthogonal Polynomials , 1998 .
[62] Arak M. Mathai,et al. The H-Function , 2010 .
[63] N. Temme. Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .
[64] La fonction hypergéométrique , 1937 .
[65] A. Bobenko,et al. Painleve Equations in the Differential Geometry of Surfaces , 2001 .
[66] Edmund Taylor Whittaker. An expression of certain known functions as generalized hypergeometric functions , 1903 .
[67] Roderick Wong,et al. Asymptotic Expansion of the Krawtchouk Polynomials and their Zeros , 2004 .
[68] T. W. Chaundy,et al. EXPANSIONS OF APPELL'S DOUBLE HYPERGEOMETRIC FUNCTIONS , 1940 .
[69] Jian-Ming Jin,et al. Computation of special functions , 1996 .
[70] G. N. Watson. Bessel Functions and Kapteyn Series , 1917 .
[71] P. Deift,et al. Asymptotics for the painlevé II equation , 1995 .
[72] Lun Zhang,et al. Global asymptotics of Hermite polynomials via Riemann-Hilbert approach , 2007 .
[73] Walter Van Assche,et al. Asymptotics for Orthogonal Polynomials , 1987 .
[74] V. B. Uvarov,et al. Special Functions of Mathematical Physics: A Unified Introduction with Applications , 1988 .
[75] W. Wasow. Asymptotic expansions for ordinary differential equations , 1965 .
[76] E. T. Copson,et al. An introduction to the theory of functions of a complex variable , 1950 .
[77] T. Stieltjes. Recherches sur les fractions continues , 1995 .
[78] W. Assche,et al. Orthogonal polynomials and special functions : Leuven 2002 , 2003 .
[79] A. Wiles. Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .
[80] F. L. Yost,et al. Coulomb Wave Functions in Repulsive Fields , 1936 .
[81] J. R. Higgins. Completeness and basis properties of sets of special functions: Bibliography , 1977 .
[82] James A. Wilson. Asymptotics for the 4 F 3 polynomials , 1991 .
[83] D. R. Heath-Brown,et al. The Theory of the Riemann Zeta-Function , 1987 .
[84] George Gabriel Stokes,et al. Mathematical and Physical Papers: 1857. On the Discontinuity of Arbitrary Constants which appear in Divergent Developments , 2009 .
[85] T. Stieltjes,et al. Quelques recherches sur la théorie des quadratures dites mécaniques , 1884 .
[86] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[87] N. Bleistein,et al. Asymptotic Expansions of Integrals , 1975 .
[88] C. G. van der Laan,et al. Calculation of special functions: the gamma function, the exponential integrals and error-like functions , 1984 .
[89] B. Eynard,et al. Random matrices. , 2015, 1510.04430.
[90] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[91] Arno B. J. Kuijlaars,et al. The Asymptotic Zero Distribution of Orthogonal Polynomials with Varying Recurrence Coefficients , 1999 .
[92] S. I︠u︡. Slavi︠a︡nov,et al. Special Functions: A Unified Theory Based on Singularities , 2000 .
[93] J. Leray,et al. Calcul de la solution élémentaire de l'opérateur d'Euler-Poisson-Darboux et de l'opérateur de Tricomi-Clairaut, hyperbolique, d'ordre 2 , 1971 .
[94] E. Copson. On the Riemann-Green function , 1957 .
[95] P. Debye,et al. Näherungsformeln für die Zylinderfunktionen für große Werte des Arguments und unbeschränkt veränderliche Werte des Index , 1909 .
[96] Fritz Oberhettinger,et al. Tables of Fourier Transforms and Fourier Transforms of Distributions , 1990 .
[97] D. Sattinger,et al. Integrable systems and isomonodromy deformations , 1993, solv-int/9801010.
[98] P. Painlevé,et al. Mémoire sur les équations différentielles dont l'intégrale générale est uniforme , 1900 .
[99] R. Askey,et al. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .
[100] D. F. Lawden. Elliptic Functions and Applications , 1989 .
[101] D. A. Leonard. Orthogonal Polynomials, Duality and Association Schemes , 1982 .
[102] M.N.H. Abel. Recherches sur les fonctions elliptiques. , 1827 .
[103] H. Airault,et al. Rational solutions of Painleve equations , 1979 .
[104] C. Chester,et al. An extension of the method of steepest descents , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.
[105] D. Zwillinger. Handbook of differential equations , 1990 .
[106] Roderick Wong,et al. Global asymptotic expansions of the Laguerre polynomials—a Riemann–Hilbert approach , 2008, Numerical Algorithms.
[107] A. Ivic,et al. The Riemann zeta-function : theory and applications , 2003 .
[108] Hypergeometric functions, how special are they? , 2014 .
[109] René Garnier,et al. Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1912 .
[110] P. Lax. INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .
[111] Stephanos Venakides,et al. Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .
[112] Orrin Frink,et al. A new class of orthogonal polynomials: The Bessel polynomials , 1949 .
[113] D. Stanton. Orthogonal Polynomials and Chevalley Groups , 1984 .
[114] D. H. Griffel,et al. An Introduction to Orthogonal Polynomials , 1979 .
[115] A. Kolmogorov,et al. Mathematics of the 19th century: function theory according to Chebyshev, ordinary differential equations, calculus of variations, theory of finite differences , 1998 .
[116] N. D. Bruijn. Asymptotic methods in analysis , 1958 .
[117] C. W. Clenshaw,et al. The special functions and their approximations , 1972 .
[118] J. Meixner,et al. Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion , 1934 .
[119] Willi-Hans Steeb,et al. Nonlinear Evolution Equations and Painleve Test , 1988 .
[120] K. Aomoto,et al. Jacobi polynomials associated with Selberg integrals , 1987 .
[121] I︠u︡. A Brychkov. Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas , 2008 .
[122] A. Laforgia. Further inequalities for the gamma function , 1984 .
[123] E. Artin,et al. The Gamma Function , 1964 .
[124] Mizan Rahman,et al. Basic Hypergeometric Series , 1990 .
[125] R. Wong,et al. Uniform Asymptotic Expansions for the Discrete Chebyshev Polynomials , 2011, 1110.2839.
[126] Felix Klein,et al. Vorlesungen uber die Entwicklung der Mathematik im 19. Jahrhundert , 1967 .
[127] J. Dieudonne,et al. Special Functions and Linear Representations of Lie Groups , 1980 .
[128] V. Varadarajan,et al. Linear meromorphic differential equations: A modern point of view , 1996 .
[129] A. Sommerfeld. Mathematische Theorie der Diffraction , 1896 .
[130] X.-S. Wang,et al. Asymptotics of Orthogonal Polynomials via Recurrence Relations , 2011, 1101.4371.
[131] W. Rheinboldt,et al. Generalized hypergeometric functions , 1968 .
[132] Francisco Marcellán,et al. Orthogonal Polynomials and Special Functions: Computation and Applications , 2006 .
[133] E. Kummer,et al. Über die hypergeometrische Reihe . , 1836 .
[134] Mourad E. H. Ismail,et al. Classical and Quantum Orthogonal Polynomials in One Variable , 2005 .
[135] Peter D. Miller,et al. Discrete orthogonal polynomials: Asymptotics and applications , 2007 .
[136] Hoene-Wroński Józef Maria. Réfutation de la théorie des fonctions analytiques de Lagrange par , 1812 .
[137] Eugene P. Wigner,et al. Formulas and Theorems for the Special Functions of Mathematical Physics , 1966 .
[138] D. Dai,et al. Plancherel–Rotach Asymptotic Expansion for Some Polynomials from Indeterminate Moment Problems , 2013, Constructive Approximation.
[139] Richard Askey,et al. A Set of Orthogonal Polynomials That Generalize the Racah Coefficients or 6 - j Symbols. , 1979 .
[140] Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe. , 1859 .
[141] H. Li,et al. Asymptotic expansions for second-order linear difference equations , 1992 .
[142] William Thomson,et al. I. On the waves produced by a single impulse in water of any depth, or in a dispersive medium , 1887, Proceedings of the Royal Society of London.
[143] C. Fox. The $G$ and $H$ functions as symmetrical Fourier kernels , 1961 .
[144] Studies in the history of mathematics , 1987 .
[145] Z. Wang,et al. Asymptotic expansions for second-order linear difference equations with a turning point , 2003, Numerische Mathematik.
[146] An introduction to the theory of elliptic functions , 1923 .
[147] O. Perron,et al. Die Lehre von den Kettenbrüchen , 2013 .
[148] Alexander Varchenko. Special Functions, Kz Type Equations, and Representation Theory , 2002 .
[149] S. Ole Warnaar,et al. The importance of the Selberg integral , 2007, 0710.3981.
[150] Eugene P. Wigner,et al. Special Functions. A Group Theoretic Approach , 1969 .
[151] Eugène Catalan,et al. Sur les fractions continues , 1845 .
[152] D. Levi,et al. Painlevé transcendents : their asymptotics and physical applications , 1992 .
[153] G. Kempf. Complex abelian varieties and theta functions , 1990 .
[154] E. Hobson. The Theory of Spherical and Ellipsoidal Harmonics , 1955 .
[155] G. Green. An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism , 2008, 0807.0088.
[156] E. L. Ince. Ordinary differential equations , 1927 .
[157] S. P. Hastings,et al. A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation , 1980 .
[158] R. A. Silverman,et al. Special functions and their applications , 1966 .
[159] F. Klein,et al. Vorlesungen über die hypergeometrische Funktion: Gehalten An Der Universität Göttingen Im Wintersemester 1893/94 , 1981 .
[160] C. S. Gardner,et al. Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .
[161] Richard Askey,et al. A century of mathematics in America , 1988 .
[162] Gérard Duchamp,et al. On certain non-unique solutions of the Stieltjes moment problem , 2009, Discret. Math. Theor. Comput. Sci..
[163] C. Jacobi,et al. Fundamenta nova theoriae functionum ellipticarum , 1829 .
[164] A. Erdélyi,et al. On the Finite Difference Analogue of Rodrigues' Formula , 1952 .
[165] B. C. Carlson. Special functions of applied mathematics , 1977 .
[166] E. Saff,et al. Logarithmic Potentials with External Fields , 1997, Grundlehren der mathematischen Wissenschaften.
[167] Athanassios S. Fokas,et al. Painleve Transcendents: The Riemann-hilbert Approach , 2006 .
[168] Paul Erdös,et al. On Interpolation. III. Interpolatory Theory of Polynomials , 1940 .
[169] V. Prasolov,et al. Elliptic functions and elliptic integrals , 1997 .
[170] A. Newell,et al. Monodromy- and spectrum-preserving deformations I , 1980 .
[171] Zhen Wang,et al. Linear difference equations with transition points , 2004, Math. Comput..
[172] B. Simon. The Classical Moment Problem as a Self-Adjoint Finite Difference Operator , 1998, math-ph/9906008.
[173] Gregor Wentzel,et al. Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik , 1926 .
[174] C. Sturm,et al. Mémoire Sur les Equations différentielles linéaires du second ordre , 2009 .
[175] Vladimir Retakh,et al. General hypergeometric systems of equations and series of hypergeometric type , 1992 .
[176] W. J. Sternberg. The theory of potential and spherical harmonics , 1946 .
[177] Sergei K. Suslov,et al. The Hahn and Meixner polynomials of an imaginary argument and some of their applications , 1985 .
[178] Allan M. Krall,et al. Hilbert space, boundary value problems, and orthogonal polynomials , 2002 .
[179] N. Nielsen. Handbuch der Theorie der Cylinderfunktionen , 1904 .
[180] R. Wong,et al. On the Asymptotics of the Meixner—Pollaczek Polynomials and Their Zeros , 2000 .
[181] George D. Birkhoff,et al. Analytic theory of singular difference equations , 1933 .
[182] E. Hille,et al. Ordinary di?erential equations in the complex domain , 1976 .
[183] P. Boutroux,et al. Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre (suite) , 1913 .
[184] M. Hutton. La Theorie des Fonctions de Bessel (exposee en vue de ses applications a la Physique Mathematique) , 1956, The Mathematical Gazette.
[185] B. G. Korenev. Bessel Functions and Their Applications , 2002 .
[186] C. Meijer. Expansion Theorems for the G-Function. III , 1953 .
[187] J. Plemelj. Riemannsche Funktionenscharen mit gegebener Monodromiegruppe , 1908 .
[188] Walter Gautschi,et al. Leonhard Euler: His Life, the Man, and His Works , 2008, SIAM Rev..
[189] F. Olver. Asymptotics and Special Functions , 1974 .
[190] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[191] Jacques Dutka,et al. The early history of the factorial function , 1991 .
[192] C. Gauss,et al. DISQUISITIONES GENERALES CIRCA SERIEM INFINITAM , 2011 .
[193] James B. Seaborn,et al. Hypergeometric Functions and Their Applications , 1991 .
[194] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[196] George Esq. Green,et al. On the Motion of Waves in a variable canal of small depth and width , 1838 .
[197] W. Gautschi. Some Elementary Inequalities Relating to the Gamma and Incomplete Gamma Function , 1959 .
[198] P. Turán,et al. On the zeros of the polynomials of Legendre , 1950 .
[199] E. H. Neville,et al. Jacobian Elliptic Functions , 1952, The Mathematical Gazette.
[200] T. Mark Dunster. Uniform Asymptotic Expansions for Charlier Polynomials , 2001, J. Approx. Theory.
[201] Replica field theories, painlevé transcendents, and exact correlation functions. , 2002, Physical review letters.
[202] Hypergeometrische Funktionen zweier Veränderlichen , 1931 .
[203] Wolfram Koepf,et al. Hypergeometric Summation : An Algorithmic Approach to Summation and Special Function Identities , 1998 .
[204] M. Roberts. Sur quelques théorémés d’algébre , 1861 .
[205] Claus Müller. Analysis of Spherical Symmetries in Euclidean Spaces , 1997 .
[206] James A. Wilson. Some Hypergeometric Orthogonal Polynomials , 1980 .
[207] A. Russell,et al. XLVIII. The effective resistance and inductance of a concentric main, and methods of computing the ber and bei and allied functions , 1909 .
[208] S. Bochner,et al. Über Sturm-Liouvillesche Polynomsysteme , 1929 .
[209] W. N. Bailey,et al. Generalized hypergeometric series , 1935 .
[210] Larry C. Andrews,et al. Special Functions Of Mathematics For Engineers , 2022 .
[211] Y. Motohashi. Spectral Theory of the Riemann Zeta-Function , 1997 .
[212] H. Buchholz,et al. The Confluent Hypergeometric Function: with Special Emphasis on its Applications , 1969 .
[213] E. W. Barnes. A New Development of the Theory of the Hypergeometric Functions , 1908 .
[214] J. Horn,et al. Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen , 1889 .
[215] Francisco Marcellán,et al. On the “Favard theorem” and its extensions , 2001 .
[216] Appel. Sur les fonctions hypergéométriques de deux variables , 1882 .
[217] R. Wong,et al. GLOBAL ASYMPTOTICS OF THE HAHN POLYNOMIALS , 2012, 1210.2359.
[218] P. L. Sachdev,et al. A Compendium on Nonlinear Ordinary Differential Equations , 1996 .
[219] J. B. McLeod,et al. Application of Uniform Asymptotics to the Second Painlevé Transcendent , 1996 .
[220] C. Tracy,et al. Painlevé functions of the third kind , 1977 .
[221] H. Schmidt. Über Existenz und Darstellung impliziter Funktionen bei singulären Anfangswerten , 1938 .
[222] Jacques Dutka. The early history of the hypergeometric function , 1984 .
[223] T. MacRobert. Spherical harmonics : an elementary treatise on harmonic functions , 1927 .
[224] Elna Browning McBride. Obtaining Generating Functions , 1971 .
[225] E. J. Routh. On some Properties of certain Solutions of a Differential Equation of the Second Order , 1884 .
[226] R. Prosser. On the Kummer Solutions of the Hypergeometric Equation , 1994 .
[227] Lucy Joan Slater. Confluent Hypergeometric Functions , 1960 .
[228] J. Fourier. Théorie analytique de la chaleur , 2009 .
[229] H. Schwarz,et al. Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt. , 1873 .
[230] George D. Birkhoff,et al. Formal theory of irregular linear difference equations , 1930 .
[231] A. Wiles,et al. Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .
[232] G. Darboux,et al. Mémoire sur l'approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série. , 1878 .
[233] Géza Freud,et al. Orthogonal Polynomials , 1971, Series and Products in the Development of Mathematics.
[234] C. Tracy,et al. Painlevé Functions in Statistical Physics , 2009, 0912.2362.
[235] É. Goursat,et al. Sur l'équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique , 1881 .
[236] B. Dwork. Generalized Hypergeometric Functions , 1990 .
[237] P. Davis. Leonhard Euler's Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz , 1959 .
[238] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[239] G. A. Watson. A treatise on the theory of Bessel functions , 1944 .
[240] Harry Hochstadt,et al. The functions of mathematical physics , 1972 .
[241] Sergey Khrushchev. Orthogonal Polynomials and Continued Fractions: From Euler's Point of View , 2008 .
[242] L. Lichtenstein,et al. Spektraltheorie der unendlichen Matrizen : Einführung in den analytischen Apparat der Quantenmechanik , 1929 .
[243] Michio Jimbo,et al. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .
[244] Mark J. Ablowitz,et al. Exact Linearization of a Painlevé Transcendent , 1977 .