Emission redistribution from a quantum dot-bowtie nanoantenna

Abstract. We present a combined experimental and simulation study of a single self-assembled InGaAs quantum dot coupled to a nearby (∼25  nm) plasmonic antenna. Microphotoluminescence spectroscopy shows a ∼2.4× increase of intensity, which is attributed to spatial far-field redistribution of the emission from the quantum dot-antenna system. Power-dependent studies show similar saturation powers of 2.5  μW for both coupled and uncoupled quantum dot emission in polarization-resolved measurements. Moreover, time-resolved spectroscopy reveals the absence of Purcell enhancement of the quantum dot coupled to the antenna as compared with an uncoupled dot, yielding comparable exciton lifetimes of τ∼0.5  ns. This observation is supported by numerical simulations, suggesting only minor Purcell-effects of <2× for emitter–antenna separations >25  nm. The observed increased emission from a coupled quantum dot–plasmonic antenna system is found to be in good qualitative agreement with numerical simulations and will lead to a better understanding of light–matter coupling in such semiconductor–plasmonic hybrid systems.

[1]  Fedor Jelezko,et al.  Single defect centres in diamond: A review , 2006 .

[2]  T. Asano,et al.  Spontaneous-emission control by photonic crystals and nanocavities , 2007 .

[3]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[4]  Harald Giessen,et al.  Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna. , 2010, Nano letters.

[5]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[6]  Oliver Benson,et al.  Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures. , 2011, Optics express.

[7]  F Troiani,et al.  Electrical control of the exciton-biexciton splitting in self-assembled InGaAs quantum dots. , 2011, Nanotechnology.

[8]  Oleksandr Voznyy,et al.  25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter‐Century of Advances , 2013, Advanced materials.

[9]  L. R. Wilson,et al.  Metal nanoantenna plasmon resonance lineshape modification by semiconductor surface native oxide , 2012 .

[10]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[11]  Thomas F. Krauss,et al.  Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots , 2001 .

[12]  Jean-Michel Gérard,et al.  InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si , 1996 .

[13]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[14]  Max Bichler,et al.  Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots , 2014, 1405.6556.

[15]  Harald Giessen,et al.  Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot. , 2014, Nano letters.

[16]  D. Englund,et al.  Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. , 2005, Physical review letters.

[17]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[18]  Gerhard Abstreiter,et al.  Enhancement of Photoluminescence from Near-Surface Quantum Dots by Suppression of Surface State Density. , 2002 .

[19]  Pierre M. Petroff,et al.  Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes , 2005, Science.

[20]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[21]  F. Flassig,et al.  Towards on-chip generation, routing and detection of non-classical light , 2015, Photonics West - Optoelectronic Materials and Devices.

[22]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[23]  M. Kaniber,et al.  Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate , 2014, 1405.3179.

[24]  Yoshihisa Yamamoto,et al.  Efficient source of single photons: a single quantum dot in a micropost microcavity. , 2002 .

[25]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .

[26]  J. Rarity,et al.  Photonic quantum technologies , 2013 .

[27]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[28]  A. Zrenner,et al.  Recent advances in exciton-based quantum information processing in quantum dot nanostructures , 2005 .

[29]  M. Kaniber,et al.  Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method , 2016, Scientific reports.

[30]  Peter Michler,et al.  Quantum correlation among photons from a single quantum dot at room temperature , 2000, Nature.

[31]  Kentaroh Watanabe,et al.  Fabrication of InGaAs quantum dots on GaAs(0 0 1) by droplet epitaxy , 2000 .

[32]  A S Sørensen,et al.  Unraveling the Mesoscopic Character of Quantum Dots in Nanophotonics. , 2014, Physical review letters.

[33]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[34]  M. S. Skolnick,et al.  III–V quantum light source and cavity-QED on Silicon , 2013, Scientific reports.

[35]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[36]  K. Cheng,et al.  Development of molecular beam epitaxy technology for III–V compound semiconductor heterostructure devices , 2013 .

[37]  Bert Hecht,et al.  Electrically connected resonant optical antennas. , 2012, Nano letters.

[38]  Gordon S. Kino,et al.  Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles , 2005 .

[39]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[40]  Peter Lodahl,et al.  Strongly modified plasmon-matter interaction with mesoscopic quantum emitters , 2010, 1011.5669.

[41]  J. J. Finley,et al.  Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals , 2005 .

[42]  Christos Argyropoulos,et al.  Ultrafast spontaneous emission source using plasmonic nanoantennas , 2015, Nature Communications.

[43]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[44]  Michael Bauer,et al.  Adaptive subwavelength control of nano-optical fields , 2007, Nature.

[45]  Min Xiao,et al.  Resonantly driven coherent oscillations in a solid-state quantum emitter , 2009 .

[46]  David R. Smith,et al.  Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas , 2014, Nature Photonics.

[47]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[48]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[49]  D. O'connor,et al.  Time-Correlated Single Photon Counting , 1984 .

[50]  Dirk Englund,et al.  Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade , 2008, 0804.2740.

[51]  O. Voznyy,et al.  25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter‐Century of Advances , 2013, Advanced materials.