Multi-scale design of the chela of the hermit crab Coenobita brevimanus.

[1]  W. C. Long,et al.  Mechanical Resistance in Decapod Claw Denticles: Contribution of Structure and Composition. , 2020, Acta biomaterialia.

[2]  Steven A Herrera,et al.  The Stomatopod Telson: Convergent Evolution in the Development of a Biological Shield , 2019, Advanced Functional Materials.

[3]  S. Cai,et al.  Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure. , 2019, Acta biomaterialia.

[4]  W. Fang,et al.  What are the sympatric mechanisms for three species of terrestrial hermit crab (Coenobita rugosus, C. brevimanus, and C. cavipes) in coastal forests? , 2018, PloS one.

[5]  Shahrouz Amini,et al.  Biomechanical Design of the Mantis Shrimp Saddle: A Biomineralized Spring Used for Rapid Raptorial Strikes , 2018, iScience.

[6]  P. Zavattieri,et al.  Crack twisting and toughening strategies in Bouligand architectures , 2018, International Journal of Solids and Structures.

[7]  M. Meyers,et al.  Revealing the Mechanics of Helicoidal Composites through Additive Manufacturing and Beetle Developmental Stage Analysis , 2018, Advanced Functional Materials.

[8]  Shahrouz Amini,et al.  Multi-scale structural design and biomechanics of the pistol shrimp snapper claw. , 2018, Acta biomaterialia.

[9]  Steven A Herrera,et al.  Ecologically Driven Ultrastructural and Hydrodynamic Designs in Stomatopod Cuticles , 2018, Advanced materials.

[10]  Qunfeng Cheng,et al.  High‐Performance Nanocomposites Inspired by Nature , 2017, Advanced materials.

[11]  Marc A. Meyers,et al.  Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications , 2017 .

[12]  P. Zavattieri,et al.  Twisting cracks in Bouligand structures. , 2017, Journal of the mechanical behavior of biomedical materials.

[13]  P. Fratzl,et al.  Crack driving force in twisted plywood structures. , 2017, Acta biomaterialia.

[14]  S. Nikolov,et al.  Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical study , 2016, Bioinspiration & biomimetics.

[15]  P. Zavattieri,et al.  A Sinusoidally Architected Helicoidal Biocomposite , 2016, Advanced materials.

[16]  Shahrouz Amini,et al.  The Mantis Shrimp Saddle: A Biological Spring Combining Stiffness and Flexibility , 2015 .

[17]  M. Meyers,et al.  Structural Design Elements in Biological Materials: Application to Bioinspiration , 2015, Advanced materials.

[18]  Shahrouz Amini,et al.  The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. , 2015, Nature materials.

[19]  Admir Masic,et al.  Large area sub-micron chemical imaging of magnesium in sea urchin teeth. , 2015, Journal of structural biology.

[20]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[21]  H. Su,et al.  Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages , 2014, Nature Communications.

[22]  H. Wagner,et al.  Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. , 2013, Acta biomaterialia.

[23]  Marc A. Meyers,et al.  Biological materials: Functional adaptations and bioinspired designs , 2012 .

[24]  D. Raabe,et al.  Correlation of structure, composition and local mechanical properties in the dorsal carapace of the edible crab Cancer pagurus , 2012 .

[25]  Jürgen Hartmann,et al.  A Spider's Fang: How to Design an Injection Needle Using Chitin‐Based Composite Material , 2012 .

[26]  Steven A Herrera,et al.  The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer , 2012, Science.

[27]  Laura M. Hamm,et al.  Raman spectroscopic characterization of the magnesium content in amorphous calcium carbonates , 2012 .

[28]  D. Carnelli,et al.  Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response. , 2011, Journal of biomechanics.

[29]  S. Nikolov,et al.  Revealing the Design Principles of High‐Performance Biological Composites Using Ab initio and Multiscale Simulations: The Example of Lobster Cuticle , 2010, Advanced materials.

[30]  Subra Suresh,et al.  Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod , 2010, Proceedings of the National Academy of Sciences.

[31]  Liyun Wang,et al.  Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior , 2008 .

[32]  M. Meyers,et al.  Structure and mechanical properties of crab exoskeletons. , 2008, Acta biomaterialia.

[33]  D. Raabe,et al.  Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. , 2008, Journal of structural biology.

[34]  D. Raabe,et al.  Preferred crystallographic texture of alpha-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. , 2007, Acta biomaterialia.

[35]  S. Rehman,et al.  Raman Spectroscopy of Biological Tissues , 2007 .

[36]  D. Raabe,et al.  The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. , 2007, Acta biomaterialia.

[37]  Toshio Nakamura,et al.  Identification of elastic-plastic anisotropic parameters using instrumented indentation and inverse analysis , 2007 .

[38]  Horacio Dante Espinosa,et al.  An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl , 2007 .

[39]  D. Raabe,et al.  Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation. , 2006, Journal of structural biology.

[40]  D. Raabe,et al.  Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation , 2006 .

[41]  Dierk Raabe,et al.  The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material , 2005 .

[42]  F. Ulm,et al.  Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters , 2004 .

[43]  R. Caldwell,et al.  Biomechanics: Deadly strike mechanism of a mantis shrimp , 2004, Nature.

[44]  K. Wahl,et al.  Erratum: “Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation” [J. Appl. Phys. 90, 1192 (2001)] , 2001 .

[45]  J. Lamon,et al.  The influence of the interphase and associated interfaces on the deflection of matrix cracks in ceramic matrix composites , 2000 .

[46]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[47]  B. Hazlett,et al.  The Behavioral Ecology of Hermit Crabs , 1981 .

[48]  E. Reissner Stresses and Small Displacements of Shallow Spherical Shells. I , 1946 .

[49]  K. Jepsen,et al.  Measuring the dynamic mechanical response of hydrated mouse bone by nanoindentation. , 2011, Journal of the mechanical behavior of biomedical materials.

[50]  K. Srnnul,et al.  Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study , 2007 .

[51]  Y Bouligand,et al.  Twisted fibrous arrangements in biological materials and cholesteric mesophases. , 1972, Tissue & cell.