Microstructure and properties of in-situ nickel-aluminum bronze coating by underwater wire-feed laser cladding

[1]  Yifu Shen,et al.  Oxidation resistant FeCoNiCrAl high entropy alloy/AlSi12 composite coatings with excellent adhesion on Ti-6Al-4 V alloy substrate via mechanical alloying and subsequent laser cladding , 2023, Surface and Coatings Technology.

[2]  V. Sufiiarov,et al.  Selective Laser Melting of (Fe-Si-B)/Cu Composite: Structure and Magnetic Properties Study , 2023, Metals.

[3]  Yifu Shen,et al.  Enhanced mechanical and anticorrosion properties in cryogenic friction stir processed duplex stainless steel , 2022, Materials & Design.

[4]  Z. Ni,et al.  Underwater Laser Welding/Cladding for High-performance Repair of Marine Metal Materials: A Review , 2022, Chinese Journal of Mechanical Engineering.

[5]  N. Guo,et al.  Microstructure and properties of Ti-6Al-4V titanium alloy prepared by underwater wire feeding laser deposition , 2022, Journal of Manufacturing Processes.

[6]  W. Hu,et al.  Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: a critical review , 2021, Journal of Materials Science & Technology.

[7]  Liu Yantao,et al.  Microstructure and mechanical behavior of Cu–9Al–4Ni-3.5Fe-0.5Mn alloy fabricated by laser melting deposition , 2021, Materials Science and Engineering: A.

[8]  K. Zhou,et al.  Nanotwins-containing microstructure and superior mechanical strength of a Cu‒9Al‒5Fe‒5Ni alloy additively manufactured by laser metal deposition , 2021 .

[9]  N. Guo,et al.  Underwater laser welding for 304 stainless steel with filler wire , 2020 .

[10]  Lei Liu,et al.  Microstructure modification and improving corrosion resistance of laser surface quenched nickel–aluminum bronze alloy , 2020 .

[11]  J. Oliveira,et al.  Processing parameters in laser powder bed fusion metal additive manufacturing , 2020 .

[12]  C. Hutchinson,et al.  Selective laser melting of nickel aluminium bronze , 2020 .

[13]  J. Kruth,et al.  Influence of selective laser melting process parameters on texture evolution in pure copper , 2019, Journal of Materials Processing Technology.

[14]  G. Jin,et al.  Underwater wet laser cladding on 316L stainless steel: A protective material assisted method , 2019, Optics & Laser Technology.

[15]  Haihong Zhu,et al.  Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting , 2019, Materials Letters.

[16]  Lei Liu,et al.  The corrosion behavior of Ni-Cu gradient layer on the nickel aluminum-bronze (NAB) alloy , 2018, Corrosion Science.

[17]  Makiko Yonehara,et al.  Selective Laser Melting of Pure Copper , 2018 .

[18]  G. Jin,et al.  Underwater laser cladding in full wet surroundings for fabrication of nickel aluminum bronze coatings , 2018 .

[19]  Yu-gui Zheng,et al.  Corrosion and Cavitation Erosion Behaviors of Two Marine Propeller Materials in Clean and Sulfide-Polluted 3.5% NaCl Solutions , 2017, Acta Metallurgica Sinica (English Letters).

[20]  Z. Deng,et al.  Effect of water depth on weld quality and welding process in underwater fiber laser welding , 2017 .

[21]  Liqiang Wang,et al.  Investigation of microstructure and mechanical properties of hot worked NiAl bronze alloy with different deformation degree , 2015 .

[22]  Lei Liu,et al.  Effect of heat treatment on microstructure evolution and erosion–corrosion behavior of a nickel–aluminum bronze alloy in chloride solution , 2015 .

[23]  F. Matsuda,et al.  Effect of shielding conditions of local dry cavity on weld quality in underwater Nd:YAG laser welding , 2006 .

[24]  T. Mcnelley,et al.  The influence of friction stir processing parameters on microstructure of as-cast NiAl bronze , 2005 .

[25]  Kurt Mann,et al.  Underwater Laser Welding by 4 kW CW YAG Laser , 2001 .

[26]  A. Demir,et al.  Selective laser melting of pure Cu with a 1 kW single mode fiber laser , 2018 .

[27]  Hui Gao,et al.  Applications of Underwater Laser Peening in Nuclear Power Plant Maintenance , 2012 .