Exact computation of the halfspace depth

For computing the exact value of the halfspace depth of a point w.r.t. a data cloud of n points in arbitrary dimension, a theoretical framework is suggested. Based on this framework a whole class of algorithms can be derived. In all of these algorithms the depth is calculated as the minimum over a finite number of depth values w.r.t. proper projections of the data cloud. Three variants of this class are studied in more detail. All of these algorithms are capable of dealing with data that are not in general position and even with data that contain ties. As is shown by simulations, all proposed algorithms prove to be very efficient.

[1]  Joan Antoni Sellarès,et al.  Efficient computation of location depth contours by methods of computational geometry , 2003, Stat. Comput..

[2]  Karl Mosler,et al.  Data analysis and classification with the zonoid depth , 2003, Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications.

[3]  Pat Morin,et al.  Absolute approximation of Tukey depth: Theory and experiments , 2013, Comput. Geom..

[4]  Peter J. Rousseeuw,et al.  ISODEPTH: A Program for Depth Contours , 1996 .

[5]  P. Rousseeuw,et al.  Bivariate location depth , 1996 .

[6]  K. Mosler Depth Statistics , 2012, Encyclopedia of Image Processing.

[7]  Alicia Nieto-Reyes,et al.  The random Tukey depth , 2007, Comput. Stat. Data Anal..

[8]  K. Mosler "Multivariate Dispersion, Central Regions, and Depth": The Lift Zonoid Approach , 2002 .

[9]  Xiaohui Liu Fast and exact implementation of 3-dimensional Tukey depth regions , 2014 .

[10]  Franco P. Preparata,et al.  The Densest Hemisphere Problem , 1978, Theor. Comput. Sci..

[11]  Tatjana Lange,et al.  Fast nonparametric classification based on data depth , 2012, Statistical Papers.

[12]  Peter Rousseeuw,et al.  Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..

[13]  Regina Y. Liu,et al.  Regression depth. Commentaries. Rejoinder , 1999 .

[14]  J. L. Hodges,et al.  A Bivariate Sign Test , 1955 .

[15]  W. Stahel Robuste Schätzungen: infinitesimale Optimalität und Schätzungen von Kovarianzmatrizen , 1981 .

[16]  Davy Paindaveine,et al.  Computing multiple-output regression quantile regions from projection quantiles , 2011, Computational Statistics.

[17]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[18]  Patrick M. Thomas,et al.  Efficient Computation of , 1976 .

[19]  Diane L. Souvaine,et al.  Dynamic Maintenance of Half-Space Depth for Points and Contours , 2011, ArXiv.

[20]  R. Dyckerhoff Data depths satisfying the projection property , 2004 .

[21]  R. Serfling,et al.  General notions of statistical depth function , 2000 .

[22]  Xiaohui Liu Fast implementation of the Tukey depth , 2017, Comput. Stat..

[23]  Ilya S. Molchanov,et al.  Multivariate risks and depth-trimmed regions , 2006, Finance Stochastics.

[24]  P. Rousseeuw,et al.  Computing depth contours of bivariate point clouds , 1996 .

[25]  Linglong Kong,et al.  Quantile tomography: using quantiles with multivariate data , 2008, Statistica Sinica.

[26]  Regina Y. Liu,et al.  Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh) , 1999 .

[27]  Tatjana Lange,et al.  Computing zonoid trimmed regions of dimension d>2 , 2009, Comput. Stat. Data Anal..

[28]  Xiaohui Liu,et al.  Computing Halfspace Depth and Regression Depth , 2014, Commun. Stat. Simul. Comput..

[29]  D. Donoho,et al.  Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .

[30]  Timothy M. Chan,et al.  On Approximate Range Counting and Depth , 2007, SCG '07.

[31]  Miroslav Siman,et al.  Computing multiple-output regression quantile regions , 2012, Comput. Stat. Data Anal..

[32]  K. Mosler,et al.  Zonoid trimming for multivariate distributions , 1997 .

[33]  Karl Mosler,et al.  Stochastic linear programming with a distortion risk constraint , 2014, OR Spectr..

[34]  Regina Y. Liu On a Notion of Data Depth Based on Random Simplices , 1990 .

[35]  Jennifer Jie Xu,et al.  Knowledge Discovery and Data Mining , 2014, Computing Handbook, 3rd ed..

[36]  D. Paindaveine,et al.  Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth , 2010, 1002.4486.

[37]  R. Y. Liu,et al.  On a notion of simplicial depth. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Y. Zuo Projection-based depth functions and associated medians , 2003 .

[39]  David Bremner,et al.  Primal-dual algorithms for data depth , 2003, Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications.

[40]  Pat Morin,et al.  Output-sensitive algorithms for Tukey depth and related problems , 2008, Stat. Comput..

[41]  謙太郎 野間口,et al.  仮説に制約条件がある場合の Bivariate Sign Test , 1986 .

[42]  Gleb A. Koshevoy,et al.  The Tukey Depth Characterizes the Atomic Measure , 2002 .

[43]  Theodore Johnson,et al.  Fast Computation of 2-Dimensional Depth Contours , 1998, KDD.

[44]  Regina Y. Liu,et al.  A Quality Index Based on Data Depth and Multivariate Rank Tests , 1993 .