Exact computation of the halfspace depth
暂无分享,去创建一个
[1] Joan Antoni Sellarès,et al. Efficient computation of location depth contours by methods of computational geometry , 2003, Stat. Comput..
[2] Karl Mosler,et al. Data analysis and classification with the zonoid depth , 2003, Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications.
[3] Pat Morin,et al. Absolute approximation of Tukey depth: Theory and experiments , 2013, Comput. Geom..
[4] Peter J. Rousseeuw,et al. ISODEPTH: A Program for Depth Contours , 1996 .
[5] P. Rousseeuw,et al. Bivariate location depth , 1996 .
[6] K. Mosler. Depth Statistics , 2012, Encyclopedia of Image Processing.
[7] Alicia Nieto-Reyes,et al. The random Tukey depth , 2007, Comput. Stat. Data Anal..
[8] K. Mosler. "Multivariate Dispersion, Central Regions, and Depth": The Lift Zonoid Approach , 2002 .
[9] Xiaohui Liu. Fast and exact implementation of 3-dimensional Tukey depth regions , 2014 .
[10] Franco P. Preparata,et al. The Densest Hemisphere Problem , 1978, Theor. Comput. Sci..
[11] Tatjana Lange,et al. Fast nonparametric classification based on data depth , 2012, Statistical Papers.
[12] Peter Rousseeuw,et al. Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..
[13] Regina Y. Liu,et al. Regression depth. Commentaries. Rejoinder , 1999 .
[14] J. L. Hodges,et al. A Bivariate Sign Test , 1955 .
[15] W. Stahel. Robuste Schätzungen: infinitesimale Optimalität und Schätzungen von Kovarianzmatrizen , 1981 .
[16] Davy Paindaveine,et al. Computing multiple-output regression quantile regions from projection quantiles , 2011, Computational Statistics.
[17] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[18] Patrick M. Thomas,et al. Efficient Computation of , 1976 .
[19] Diane L. Souvaine,et al. Dynamic Maintenance of Half-Space Depth for Points and Contours , 2011, ArXiv.
[20] R. Dyckerhoff. Data depths satisfying the projection property , 2004 .
[21] R. Serfling,et al. General notions of statistical depth function , 2000 .
[22] Xiaohui Liu. Fast implementation of the Tukey depth , 2017, Comput. Stat..
[23] Ilya S. Molchanov,et al. Multivariate risks and depth-trimmed regions , 2006, Finance Stochastics.
[24] P. Rousseeuw,et al. Computing depth contours of bivariate point clouds , 1996 .
[25] Linglong Kong,et al. Quantile tomography: using quantiles with multivariate data , 2008, Statistica Sinica.
[26] Regina Y. Liu,et al. Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh) , 1999 .
[27] Tatjana Lange,et al. Computing zonoid trimmed regions of dimension d>2 , 2009, Comput. Stat. Data Anal..
[28] Xiaohui Liu,et al. Computing Halfspace Depth and Regression Depth , 2014, Commun. Stat. Simul. Comput..
[29] D. Donoho,et al. Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .
[30] Timothy M. Chan,et al. On Approximate Range Counting and Depth , 2007, SCG '07.
[31] Miroslav Siman,et al. Computing multiple-output regression quantile regions , 2012, Comput. Stat. Data Anal..
[32] K. Mosler,et al. Zonoid trimming for multivariate distributions , 1997 .
[33] Karl Mosler,et al. Stochastic linear programming with a distortion risk constraint , 2014, OR Spectr..
[34] Regina Y. Liu. On a Notion of Data Depth Based on Random Simplices , 1990 .
[35] Jennifer Jie Xu,et al. Knowledge Discovery and Data Mining , 2014, Computing Handbook, 3rd ed..
[36] D. Paindaveine,et al. Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth , 2010, 1002.4486.
[37] R. Y. Liu,et al. On a notion of simplicial depth. , 1988, Proceedings of the National Academy of Sciences of the United States of America.
[38] Y. Zuo. Projection-based depth functions and associated medians , 2003 .
[39] David Bremner,et al. Primal-dual algorithms for data depth , 2003, Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications.
[40] Pat Morin,et al. Output-sensitive algorithms for Tukey depth and related problems , 2008, Stat. Comput..
[41] 謙太郎 野間口,et al. 仮説に制約条件がある場合の Bivariate Sign Test , 1986 .
[42] Gleb A. Koshevoy,et al. The Tukey Depth Characterizes the Atomic Measure , 2002 .
[43] Theodore Johnson,et al. Fast Computation of 2-Dimensional Depth Contours , 1998, KDD.
[44] Regina Y. Liu,et al. A Quality Index Based on Data Depth and Multivariate Rank Tests , 1993 .