Face recognition using spectral features

Face recognition is a challenging task in computer vision and pattern recognition. It is well-known that obtaining a low-dimensional feature representation with enhanced discriminatory power is of paramount importance to face recognition. Moreover, recent research has shown that the face images reside on a possibly nonlinear manifold. Thus, how to effectively exploit the hidden structure is a key problem that significantly affects the recognition results. In this paper, we propose a new unsupervised nonlinear feature extraction method called spectral feature analysis (SFA). The main advantages of SFA over traditional feature extraction methods are: (1) SFA does not suffer from the small-sample-size problem; (2) SFA can extract discriminatory information from the data, and we show that linear discriminant analysis can be subsumed under the SFA framework; (3) SFA can effectively discover the nonlinear structure hidden in the data. These appealing properties make SFA very suitable for face recognition tasks. Experimental results on three benchmark face databases illustrate the superiority of SFA over traditional methods.

[1]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[2]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[3]  H. Sebastian Seung,et al.  The Manifold Ways of Perception , 2000, Science.

[4]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[6]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[7]  David G. Stork,et al.  Pattern Classification , 1973 .

[8]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[9]  D. B. Gerham Characterizing virtual eigensignatures for general purpose face recognition , 1998 .

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  Andrew B. Kahng,et al.  Spectral Partitioning with Multiple Eigenvectors , 1999, Discret. Appl. Math..

[12]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Shimon Ullman,et al.  Face Recognition: The Problem of Compensating for Changes in Illumination Direction , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[15]  Martine D. F. Schlag,et al.  Spectral K-way ratio-cut partitioning and clustering , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[16]  Dan Klein,et al.  Spectral Learning , 2003, IJCAI.

[17]  Bernhard Schölkopf,et al.  Learning from Labeled and Unlabeled Data Using Random Walks , 2004, DAGM-Symposium.

[18]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[19]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, CAIP.

[20]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[22]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[23]  Jianbo Shi,et al.  Multiclass spectral clustering , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[24]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[25]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[27]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[28]  Suchendra M. Bhandarkar,et al.  Sirface vs. Fisherface: recognition using class specific linear projection , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[29]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[30]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[31]  Dit-Yan Yeung,et al.  Robust locally linear embedding , 2006, Pattern Recognit..

[32]  Charles J. Alpert,et al.  Spectral Partitioning: The More Eigenvectors, The Better , 1995, 32nd Design Automation Conference.

[33]  Ferdinando Silvestro Samaria,et al.  Face recognition using Hidden Markov Models , 1995 .

[34]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[35]  D. B. Graham,et al.  Characterising Virtual Eigensignatures for General Purpose Face Recognition , 1998 .

[36]  Xiaogang Wang,et al.  Random sampling LDA for face recognition , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[37]  Changbo Hu,et al.  Manifold of facial expression , 2003, 2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443).

[38]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.