Parameter Identification for Photovoltaic Models Using an Improved Learning Search Algorithm

As a renewable energy resource, solar photovoltaics (PV’s) possess a promising future. Thus, it is important to simulate, evaluate and control the PV systems. To identify the parameters for the photovoltaic (PV) models, an improved learning search optimization algorithm (ILSA) is proposed in this paper. The proposed ILSA has the following three key features: (i) the constant self-adjustment rate changes with the iteration. (ii) a new part with a self-adaptive weighting of the current best and worst solution is introduced to learning patterns to guide the iterative direction. (iii) a perturbation method is added to avoid the algorithm falling into local optimum. In order to assess the effectiveness of ILSA relative to other state-of-the-art algorithms, single diode, double diode, and PV model are used for test. Our experimental results reveal that the ILSA performs well in terms of the accuracy of optimization solutions and effectiveness.

[1]  Seppo Valkealahti,et al.  Differentiation of multiple maximum power points of partially shaded photovoltaic power generators , 2014 .

[2]  Huaglory Tianfield,et al.  Biogeography-based learning particle swarm optimization , 2016, Soft Computing.

[3]  Kang Li,et al.  An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models , 2014 .

[4]  N. Rajasekar,et al.  A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation , 2017 .

[5]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[6]  Lijun Wu,et al.  Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm , 2018, Applied Energy.

[7]  A. Rezaee Jordehi,et al.  Parameter estimation of solar photovoltaic (PV) cells: A review , 2016 .

[8]  Wenyin Gong,et al.  DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization , 2010, Soft Comput..

[9]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[10]  Xu Chen,et al.  An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models , 2019, Energy Conversion and Management.

[11]  Sílvio Mariano,et al.  A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization , 2018 .

[12]  Renquan Lu,et al.  Learning backtracking search optimisation algorithm and its application , 2017, Inf. Sci..

[13]  Lijun Wu,et al.  Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics , 2017 .

[14]  Pierre Ele,et al.  Important notes on parameter estimation of solar photovoltaic cell , 2019, Energy Conversion and Management.

[15]  A. R. Jordehi Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules , 2018 .

[16]  N. Rajasekar,et al.  Parameter extraction of two diode solar PV model using Fireworks algorithm , 2016 .

[17]  Pierre Ele,et al.  Enhanced Vibrating Particles System Algorithm for Parameters Estimation of Photovoltaic System , 2019, Journal of Power and Energy Engineering.

[18]  Temitope Raphael Ayodele,et al.  Evaluation of numerical algorithms used in extracting the parameters of a single-diode photovoltaic model , 2016 .

[19]  Souad Chebbi,et al.  Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches , 2018, Renewable and Sustainable Energy Reviews.

[20]  Yong Wang,et al.  Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm , 2017 .

[21]  Y. Chaibi,et al.  A new method to extract the equivalent circuit parameters of a photovoltaic panel , 2018 .

[22]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[23]  Andreas Sumper,et al.  Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources , 2018 .

[24]  Kay Soon Low,et al.  Optimizing Photovoltaic Model for Different Cell Technologies Using a Generalized Multidimension Diode Model , 2015, IEEE Transactions on Industrial Electronics.

[25]  Q. Niu,et al.  A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells , 2014 .

[26]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[27]  M. Ouhrouche,et al.  Maximum likelihood parameters estimation of single-diode model of photovoltaic generator , 2019, Renewable Energy.

[28]  Lijun Wu,et al.  Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy , 2016 .

[29]  N. Maouhoub Photovoltaic module parameter estimation using an analytical approach and least squares method , 2018 .

[30]  Peijie Lin,et al.  Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions , 2019, Energy Conversion and Management.

[31]  Girish Kumar Singh,et al.  Solar power generation by PV (photovoltaic) technology: A review , 2013 .

[32]  Jun Liu,et al.  A heuristic algorithm combining Pareto optimization and niche technology for multi-objective unequal area facility layout problem , 2020, Eng. Appl. Artif. Intell..

[33]  Huaglory Tianfield,et al.  Biogeography-based optimization with covariance matrix based migration , 2016, Appl. Soft Comput..

[34]  Anis Sakly,et al.  Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction , 2018, Energy Conversion and Management.

[35]  Xin-She Yang,et al.  Flower pollination algorithm: A novel approach for multiobjective optimization , 2014, ArXiv.

[36]  M.R.A. Paternina,et al.  A hybrid optimization framework for the non-convex economic dispatch problem via meta-heuristic algorithms , 2019 .

[37]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[38]  Feng Zou,et al.  Teaching-learning-based optimization with learning experience of other learners and its application , 2015, Appl. Soft Comput..

[39]  Giancarlo C. Righini,et al.  Plasmonic enhanced solar cells: Summary of possible strategies and recent results , 2018 .

[40]  N. Rajasekar,et al.  Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems , 2018 .

[41]  Bin Xu,et al.  Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation , 2018 .

[42]  Diego Oliva,et al.  Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm , 2017 .

[43]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[44]  Xin Wang,et al.  An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems , 2016, J. Intell. Manuf..

[45]  Lijun Wu,et al.  Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents , 2018, Energy Conversion and Management.

[46]  Dalia Yousri,et al.  Flower Pollination Algorithm based solar PV parameter estimation , 2015 .

[47]  Dhiaa Halboot Muhsen,et al.  Parameters extraction of double diode photovoltaic module’s model based on hybrid evolutionary algorithm , 2015 .

[48]  Mahmoud Reza Pishvaie,et al.  A new method to improve estimation of uncertain parameters in the Ensemble Kalman filter by re-parameterization employing prior statistics correction , 2015 .

[49]  Xu Chen,et al.  A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module , 2019, Applied Energy.

[50]  Hossam Faris,et al.  Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems , 2017, Adv. Eng. Softw..

[51]  Xu Chen,et al.  Parameters identification of photovoltaic models using an improved JAYA optimization algorithm , 2017 .

[52]  D. Maskell,et al.  Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm , 2013 .

[53]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[54]  Qishuang Ma,et al.  Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing , 2017 .

[55]  Rabeh Abbassi,et al.  An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models , 2019, Energy Conversion and Management.

[56]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..