Computing ray class groups, conductors and discriminants
暂无分享,去创建一个
[1] Henri Cohen,et al. A polynomial reduction algorithm , 1991 .
[2] Armin Leutbecher,et al. Euclidean fields having a large Lenstra constant , 1985 .
[3] Andrew Odlyzko,et al. Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results , 1990 .
[4] Gerhard Niklasch,et al. On cliques of exceptional units and Lenstra's construction of Euclidean fields , 1989 .
[5] Jacques Martinet,et al. Journées Arithmétiques 1980: Petits discriminants des corps de nombres , 1982 .
[6] Xavier-François Roblot,et al. Unités de Stark et corps de classes de Hilbert , 1996 .
[7] Henri Cohen,et al. Hermite and Smith normal form algorithms over Dedekind domains , 1996, Math. Comput..
[8] George Havas,et al. Hermite normal form computation for integer matrices , 1994 .
[9] Michael E. Pohst,et al. Computations with relative extensions of number fields with an application to the construction of Hilbert class fields , 1995, ISSAC '95.
[10] Michael Pohst,et al. Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.
[11] Hans Zantema,et al. Class numbers and units , 1980 .
[12] Norikata Nakagoshi. The structure of the multiplicative group of residue classes modulo ${\germ p}^{N+1}$ , 1979 .
[13] J. Neukirch. Algebraic Number Theory , 1999 .
[14] E. Hecke. Lectures on the Theory of Algebraic Numbers , 1981 .
[15] O. H. Lowry. Academic press. , 1972, Analytical chemistry.
[16] Jeffrey Shallit,et al. Factor refinement , 1993, SODA '90.
[17] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.