Hybrid spectral/iterative partitioning

We develop a new multi-way, hybrid spectral/iterative hypergraph partitioning algorithm that combines the strengths of spectral partitioners and iterative improvement algorithms to create a new class of partitioners. We use spectral information (the eigenvectors of a graph) to generate initial partitions, influence the selection of iterative improvement moves, and break out of local minima. Our 3-way and 4-way partitioning results exhibit significant improvement over current published results, demonstrating the effectiveness of our new method. Our hybrid algorithm produces an improvement of 25% over GFM for 3-way partitions, 41% improvement over GFM for 4-way partitions, and 58% improvement over ML_F for 4-way partitions.

[1]  Charles M. Fiduccia,et al.  A linear-time heuristic for improving network partitions , 1988, 25 years of DAC.

[2]  Georg Sigl,et al.  GORDIAN: VLSI placement by quadratic programming and slicing optimization , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Chingwei Yeh,et al.  A general purpose multiple way partitioning algorithm , 1991, 28th ACM/IEEE Design Automation Conference.

[4]  Martine D. F. Schlag,et al.  Hybrid spectral/iterative partitioning , 1997, ICCAD 1997.

[5]  Earl R. Barnes Partitioning the nodes of a graph , 1985 .

[6]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[7]  Martine D. F. Schlag,et al.  Multi-level spectral hypergraph partitioning with arbitrary vertex sizes , 1996, Proceedings of International Conference on Computer Aided Design.

[8]  Gaetano Borriello,et al.  An evaluation of bipartitioning techniques , 1995, Proceedings Sixteenth Conference on Advanced Research in VLSI.

[9]  Shantanu Dutt,et al.  VLSI circuit partitioning by cluster-removal using iterative improvement techniques , 1996, Proceedings of International Conference on Computer Aided Design.

[10]  Charles J. Alpert,et al.  Spectral Partitioning: The More Eigenvectors, The Better , 1995, 32nd Design Automation Conference.

[11]  Dennis J.-H. Huang,et al.  Multilevel Circuit Partitioning , 1997, Proceedings of the 34th Design Automation Conference.

[12]  Vipin Kumar,et al.  Analysis of Multilevel Graph Partitioning , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[13]  Chung-Kuan Cheng,et al.  A gradient method on the initial partition of Fiduccia-Mattheyses algorithm , 1995, Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).

[14]  Andrew B. Kahng,et al.  Multiway partitioning via geometric embeddings, orderings, and dynamic programming , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[16]  Martine D. F. Schlag,et al.  Multi-level spectral hypergraph partitioning with arbitrary vertex sizes , 1996, Proceedings of International Conference on Computer Aided Design.

[17]  Martine D. F. Schlag,et al.  Spectral-based multiway FPGA partitioning , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..