Computational Modelling and Information Processing within Neural Networks

My main research interest described here is toward scientifically exploring the manner in which information is processed in the nervous system. Here I employ computational modeling, experimental extracellular recordings and applied mathematics for data analysis, in order to explore: (i) the sharpening in directional selectivity as a prominent example of information processing, (ii) the neural mechanisms involved in establishing functional and effective connectivity and (iii) the degree of efficiency in information transmitting between neurons.

[1]  M. Feller,et al.  Mechanisms underlying spontaneous patterned activity in developing neural circuits , 2010, Nature Reviews Neuroscience.

[2]  J. Sanes,et al.  Molecular identification of a retinal cell type that responds to upward motion , 2008, Nature.

[3]  D. Baylor,et al.  Mosaic arrangement of ganglion cell receptive fields in rabbit retina. , 1997, Journal of neurophysiology.

[4]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[5]  W. Levick,et al.  Lateral geniculate relay of slowly conducting retinal afferents to cat visual cortex. , 1976, The Journal of physiology.

[6]  S. Sherman,et al.  Receiver operating characteristic (ROC) analysis of neurons in the cat's lateral geniculate nucleus during tonic and burst response mode , 1995, Visual Neuroscience.

[7]  M. Corner,et al.  Dynamics and plasticity in developing neuronal networks in vitro. , 2005, Progress in brain research.

[8]  P. Bearman,et al.  Correction for Graupner and Brunel, Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location , 2012, Proceedings of the National Academy of Sciences.

[9]  Gordon Pipa,et al.  Transfer entropy—a model-free measure of effective connectivity for the neurosciences , 2010, Journal of Computational Neuroscience.

[10]  W. Levick,et al.  Simultaneous recording of input and output of lateral geniculate neurones. , 1971, Nature: New biology.

[11]  J. Jack,et al.  Electric current flow in excitable cells , 1975 .

[12]  Sergio Martinoia,et al.  A self-adapting approach for the detection of bursts and network bursts in neuronal cultures , 2010, Journal of Computational Neuroscience.

[13]  Alois Knoll,et al.  Sharpening of directional selectivity from neural output of rabbit retina , 2011, Journal of Computational Neuroscience.

[14]  L. L. Bologna,et al.  Self-organization and neuronal avalanches in networks of dissociated cortical neurons , 2008, Neuroscience.

[15]  Wade G. Regehr,et al.  Timing and Specificity of Feed-Forward Inhibition within the LGN , 2005, Neuron.

[16]  J. Simpson,et al.  The accessory optic system of rabbit. I. Basic visual response properties. , 1988, Journal of neurophysiology.

[17]  R. Reid,et al.  Synaptic Interactions between Thalamic Inputs to Simple Cells in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[18]  Gustavo Deco,et al.  Optimal Information Transfer in the Cortex through Synchronization , 2010, PLoS Comput. Biol..

[19]  R. Reid,et al.  Low Response Variability in Simultaneously Recorded Retinal, Thalamic, and Cortical Neurons , 2000, Neuron.

[20]  Maurice J. Chacron,et al.  In vivo conditions influence the coding of stimulus features by bursts of action potentials , 2011, Journal of Computational Neuroscience.

[21]  H. Swadlow,et al.  The impact of 'bursting' thalamic impulses at a neocortical synapse , 2001, Nature Neuroscience.

[22]  G. Banker,et al.  Culturing nerve cells , 1998 .

[23]  Steve M. Potter,et al.  Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures , 2007, Neuroscience.

[24]  R. Reid,et al.  Efficacy of Retinal Spikes in Driving Cortical Responses , 2003, The Journal of Neuroscience.

[25]  E J Chichilnisky,et al.  Prediction and Decoding of Retinal Ganglion Cell Responses with a Probabilistic Spiking Model , 2005, The Journal of Neuroscience.

[26]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[27]  H. Barlow,et al.  Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit , 1964, The Journal of physiology.

[28]  C. R. Michael,et al.  Receptive Fields of Opponent Color Units in the Optic Nerve of the Ground Squirrel , 1966, Science.

[29]  Annette Witt,et al.  Dynamic Effective Connectivity of Inter-Areal Brain Circuits , 2011, PLoS Comput. Biol..

[30]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. , 1987, Journal of neurophysiology.

[31]  R H Masland,et al.  Receptive fields and dendritic structure of directionally selective retinal ganglion cells , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  M. Pu,et al.  Dendritic morphologies of retinal ganglion cells projecting to the nucleus of the optic tract in the rabbit , 1990, The Journal of comparative neurology.

[33]  L. Peichl,et al.  Morphology of rabbit retinal ganglion cells projecting to the medial terminal nucleus of the accessory optic system , 1986, The Journal of comparative neurology.

[34]  D. I. Vaney,et al.  Almost all ganglion cells in the rabbit retina project to the superior colliculus , 1981, Brain Research.

[35]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[36]  C. W. Oyster,et al.  The analysis of image motion by the rabbit retina , 1968, The Journal of physiology.

[37]  R. Shapley,et al.  The use of m-sequences in the analysis of visual neurons: Linear receptive field properties , 1997, Visual Neuroscience.

[38]  K. Hoffmann,et al.  Quantitative analysis of visual receptive fields of neurons in nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract in macaque monkey. , 1989, Journal of neurophysiology.

[39]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[40]  B. Wheeler,et al.  Chronic electrical stimulation of cultured hippocampal networks increases spontaneous spike rates , 2009, Journal of Neuroscience Methods.

[41]  M. Cynader,et al.  Alterations in response properties in the lateral and dorsal terminal nuclei of the cat accessory optic system following visual cortex lesions , 2004, Experimental Brain Research.

[42]  C. Chiu,et al.  Spontaneous Activity in Developing Ferret Visual Cortex In Vivo , 2001, The Journal of Neuroscience.

[43]  R. Masland,et al.  ON direction-selective ganglion cells in the rabbit retina: Dendritic morphology and pattern of fasciculation , 1998, Visual Neuroscience.

[44]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[45]  F. Amthor,et al.  Morphologies of rabbit retinal ganglion cells with complex receptive fields , 1989, The Journal of comparative neurology.

[46]  Luca Berdondini,et al.  Network Dynamics and Synchronous Activity in cultured Cortical Neurons , 2007, Int. J. Neural Syst..

[47]  Nicholas J. Priebe,et al.  Direction Selectivity of Excitation and Inhibition in Simple Cells of the Cat Primary Visual Cortex , 2005, Neuron.

[48]  E. Buhl,et al.  Retinal ganglion cells projecting to the accessory optic system in the rat , 1987, The Journal of comparative neurology.

[49]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Wenzhi Sun,et al.  Identification of ON–OFF direction‐selective ganglion cells in the mouse retina , 2005, The Journal of physiology.

[51]  P. S. Wolters,et al.  Longterm stability and developmental changes in spontaneous network burst firing patterns in dissociated rat cerebral cortex cell cultures on multielectrode arrays , 2004, Neuroscience Letters.

[52]  G. Ramakers,et al.  Conditional firing probabilities in cultured neuronal networks: a stable underlying structure in widely varying spontaneous activity patterns , 2007, Journal of neural engineering.

[53]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[54]  Sergio Martinoia,et al.  Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS Micro Electrode Arrays , 2012, Journal of Neuroscience Methods.

[55]  W. Martin Usrey,et al.  Spike Timing and Information Transmission at Retinogeniculate Synapses , 2010, The Journal of Neuroscience.

[56]  David J Field,et al.  Statistical regularities of art images and natural scenes: spectra, sparseness and nonlinearities. , 2007, Spatial vision.

[57]  M. Weliky,et al.  Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. , 1999, Science.

[58]  Viktor B. Kazantsev,et al.  Spiking Signatures of Spontaneous Activity Bursts in Hippocampal Cultures , 2011, Front. Comput. Neurosci..

[59]  Olaf Sporns,et al.  Mapping Information Flow in Sensorimotor Networks , 2006, PLoS Comput. Biol..

[60]  H. Barlow,et al.  Selective Sensitivity to Direction of Movement in Ganglion Cells of the Rabbit Retina , 1963, Science.

[61]  Lawrence C. Sincich,et al.  Preserving Information in Neural Transmission , 2009, The Journal of Neuroscience.

[62]  W. Bair Spike timing in the mammalian visual system , 1999, Current Opinion in Neurobiology.

[63]  Shigeru Shinomoto,et al.  A Method for Selecting the Bin Size of a Time Histogram , 2007, Neural Computation.

[64]  M. Volgushev,et al.  Comparison of the selectivity of postsynaptic potentials and spike responses in cat visual cortex , 2000, The European journal of neuroscience.

[65]  C. van der Togt,et al.  Segregation of direction selective neurons and synaptic organization of inhibitory intranuclear connections in the medial ternminal nucleus of the rat: An electrophysiological and immunoelectron microscopical study , 1993, The Journal of comparative neurology.

[66]  Sergio Martinoia,et al.  Evaluation of the Performance of Information Theory-Based Methods and Cross-Correlation to Estimate the Functional Connectivity in Cortical Networks , 2009, PloS one.

[67]  C. W. Oyster,et al.  Rabbit Lateral Geniculate Nucleus: Sharpener of Directional Information , 1969, Science.

[68]  Daniel A. Wagenaar,et al.  The Neurally Controlled Animat: Biological Brains Acting with Simulated Bodies , 2001, Auton. Robots.

[69]  Viola Priesemann,et al.  TRENTOOL: A Matlab open source toolbox to analyse information flow in time series data with transfer entropy , 2011, BMC Neuroscience.

[70]  W. Levick Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit's retina , 1967, The Journal of physiology.

[71]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  C. Koch,et al.  A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  William J Moody,et al.  The self‐regulating nature of spontaneous synchronized activity in developing mouse cortical neurones , 2006, The Journal of physiology.

[74]  Steve M. Potter,et al.  Searching for plasticity in dissociated cortical cultures on multi-electrode arrays , 2006, Journal of Negative Results in BioMedicine.

[75]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[76]  Henry J. Alitto,et al.  Interspike interval analysis of retinal ganglion cell receptive fields. , 2007, Journal of neurophysiology.

[77]  Michael J. Berry,et al.  Selectivity for multiple stimulus features in retinal ganglion cells. , 2006, Journal of neurophysiology.

[78]  Jonathon Shlens,et al.  The Structure of Multi-Neuron Firing Patterns in Primate Retina , 2006, The Journal of Neuroscience.

[79]  E Kaplan,et al.  Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. , 1987, The Journal of physiology.

[80]  Ido Perlman,et al.  Light-Induced Changes in Spike Synchronization between Coupled ON Direction Selective Ganglion Cells in the Mammalian Retina , 2006, The Journal of Neuroscience.

[81]  Nicholas J. Priebe,et al.  Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex , 2008, Neuron.

[82]  Matteo Carandini,et al.  Thalamic filtering of retinal spike trains by postsynaptic summation. , 2007, Journal of vision.

[83]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[84]  Vincent Torre,et al.  Toward the neurocomputer: image Processing and pattern recognition with neuronal cultures , 2005, IEEE Transactions on Biomedical Engineering.

[85]  R. Masland,et al.  Spike train signatures of retinal ganglion cell types , 2007, The European journal of neuroscience.

[86]  G Shahaf,et al.  Learning in Networks of Cortical Neurons , 2001, The Journal of Neuroscience.

[87]  W. Levick,et al.  Brisk and sluggish concentrically organized ganglion cells in the cat's retina , 1974, The Journal of physiology.

[88]  Alex Casti,et al.  Stimulus Size Dependence of Information Transfer from Retina to Thalamus , 2009, Front. Syst. Neurosci..

[89]  Steve M. Potter,et al.  Closed-Loop, Open-Source Electrophysiology , 2010, Front. Neurosci..

[90]  Sergio Martinoia,et al.  A “Spike-Based” Grammar Underlies Directional Modification in Network Connectivity: Effect on Bursting Activity and Implications for Bio-Hybrids Systems , 2012, PloS one.

[91]  W. R. Taylor,et al.  Diverse Synaptic Mechanisms Generate Direction Selectivity in the Rabbit Retina , 2002, The Journal of Neuroscience.

[92]  Henry J. Alitto,et al.  Dynamic properties of thalamic neurons for vision. , 2005, Progress in brain research.

[93]  M. Feller,et al.  Genetic Identification of an On-Off Direction- Selective Retinal Ganglion Cell Subtype Reveals a Layer-Specific Subcortical Map of Posterior Motion , 2009, Neuron.

[94]  Walter Senn,et al.  Learning Real-World Stimuli in a Neural Network with Spike-Driven Synaptic Dynamics , 2007, Neural Computation.

[95]  Sergio Martinoia,et al.  Connecting Neurons to a Mobile Robot: An In Vitro Bidirectional Neural Interface , 2007, Comput. Intell. Neurosci..

[96]  Zoltán Nádasdy,et al.  Spike sequences and their consequences , 2000, Journal of Physiology-Paris.

[97]  Steve M. Potter,et al.  Controlling Bursting in Cortical Cultures with Closed-Loop Multi-Electrode Stimulation , 2005, The Journal of Neuroscience.

[98]  Jyh-Jang Sun,et al.  Self‐organization of repetitive spike patterns in developing neuronal networks in vitro , 2010, The European journal of neuroscience.

[99]  A. Fuchs,et al.  Response properties of single units in the lateral terminal nucleus of the accessory optic system in the behaving primate. , 1989, Journal of neurophysiology.

[100]  Youping Xiao,et al.  A simple model of retina-LGN transmission , 2008, Journal of Computational Neuroscience.

[101]  W. Regehr,et al.  Retinogeniculate synaptic properties controlling spike number and timing in relay neurons. , 2003, Journal of neurophysiology.

[102]  Boris Gourévitch,et al.  Evaluating information transfer between auditory cortical neurons. , 2007, Journal of neurophysiology.

[103]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[104]  Steve M. Potter,et al.  Persistent dynamic attractors in activity patterns of cultured neuronal networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[105]  M. Feller,et al.  Spontaneous Correlated Activity in Developing Neural Circuits , 1999, Neuron.

[106]  Alois Knoll,et al.  Interspike Interval Based Filtering of Directional Selective Retinal Ganglion Cells Spike Trains , 2012, Comput. Intell. Neurosci..

[107]  Ilija Damjanović,et al.  Receptive field sizes of direction-selective units in the fish tectum. , 2009, Journal of integrative neuroscience.

[108]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[109]  Inward rectifying currents stabilize the membrane potential in dendrites of mouse amacrine cells: patch-clamp recordings and single-cell RT-PCR. , 2004, Molecular vision.

[110]  R. Jensen,et al.  Comparisons of directionally selective with other ganglion cells of the turtle retina: Intracellular recording and staining , 1983, The Journal of comparative neurology.

[111]  Toshio Aoyagi,et al.  Estimation of Functional Connectivity that Causes Burst-like Population Activities , 2009 .

[112]  B. Cleland,et al.  An analysis of the effect of retinal ganglion cell impulses upon the firing probability of neurons in the dorsal lateral geniculate nucleus of the cat , 2001, Brain Research.

[113]  W. Rall Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. , 1967, Journal of neurophysiology.

[114]  R. Reid,et al.  Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus , 1998, Nature.

[115]  D. Ferster,et al.  Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. , 1997, Journal of neurophysiology.

[116]  S. Sherman,et al.  Structure/function relationships of retinal ganglion cells in the cat , 1984, Brain Research.

[117]  Tanja Neumann,et al.  Replica-moulded polydimethylsiloxane culture vessel lids attenuate osmotic drift in long-term cell cultures , 2009, Journal of Biosciences.

[118]  V. Torre,et al.  On the Dynamics of the Spontaneous Activity in Neuronal Networks , 2007, PloS one.

[119]  F. Amthor,et al.  Morphology of on-off direction-selective ganglion cells in the rabbit retina , 1984, Brain Research.

[120]  H. Swadlow,et al.  Activation of a Cortical Column by a Thalamocortical Impulse , 2002, The Journal of Neuroscience.

[121]  Lawrence C. Sincich,et al.  Transmission of Spike Trains at the Retinogeniculate Synapse , 2007, The Journal of Neuroscience.

[122]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[123]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[124]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[125]  S. Sherman,et al.  Metabotropic glutamate receptors switch visual response mode of lateral geniculate nucleus cells from burst to tonic. , 1996, Journal of neurophysiology.

[126]  W. Usrey Spike timing and visual processing in the retinogeniculocortical pathway. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[127]  T. Weyand,et al.  Retinogeniculate transmission in wakefulness. , 2007, Journal of neurophysiology.

[128]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[129]  Hiroshi Ishikane,et al.  Identification of Retinal Ganglion Cells and Their Projections Involved in Central Transmission of Information about Upward and Downward Image Motion , 2009, PloS one.