Effect of the Acceleration of the Rindler Spacetime on the Statistical Properties of the Klein–Gordon Oscillator in One Dimension

[1]  A. Boumali,et al.  Statistical Properties of the 1D Space Fractional Klein–Gordon Oscillator , 2021, Journal of Low Temperature Physics.

[2]  Georg Junker,et al.  On the Supersymmetry of the Klein-Gordon Oscillator , 2021, Symmetry.

[3]  A. Boumali,et al.  The thermal properties of the one-dimensional boson particles in Rindler spacetime , 2021 .

[4]  C. F. Ramirez-Gutierrez,et al.  Comments on Superstatistical properties of the one-dimensional Dirac oscillator by Abdelmalek Boumali et al. , 2020, 2006.07427.

[5]  F. Ahmed The generalized Klein–Gordon oscillator in the background of cosmic string space-time with a linear potential in the Kaluza–Klein theory , 2020, 2003.04148.

[6]  P. Roy,et al.  Thermodynamics of quantum phase transitions of a Dirac oscillator in a homogenous magnetic field , 2017, Journal of Physics A: Mathematical and Theoretical.

[7]  V. Bezerra,et al.  Quantum dynamics of scalar particles in the space–time of a cosmic string in the context of gravity’s rainbow , 2019, 1912.10923.

[8]  C. Furtado,et al.  Klein–Gordon oscillator in Kaluza–Klein theory , 2016, 1603.06292.

[9]  Monika Richter,et al.  Gravitation And Cosmology , 2016 .

[10]  H. Hassanabadi,et al.  Exact solutions of the (2+1) -dimensional Dirac oscillator under a magnetic field in the presence of a minimal length in the noncommutative phase-space , 2015, 1501.07041.

[11]  H. Hassanabadi,et al.  The thermal properties of a two-dimensional Dirac oscillator under an external magnetic field , 2013 .

[12]  M. Merad,et al.  Relativistic Oscillators in a Noncommutative Space: a Path Integral Approach , 2012 .

[13]  A. Trabelsi,et al.  Path integral treatment of the one-dimensional Klein–Gordon oscillator with minimal length , 2011 .

[14]  A. Boumali,et al.  Comment on ‘Energy profile of the one-dimensional Klein–Gordon oscillator’ , 2011 .

[15]  B. Mirza,et al.  Relativistic Oscillators in a Noncommutative Space and in a Magnetic Field , 2011 .

[16]  G. Scibona,et al.  On the black hole’s thermodynamics and the entropic origin of gravity , 2010, 1011.0895.

[17]  R. Giachetti,et al.  PT-symmetric operators and metastable states of the 1D relativistic oscillators , 2010, 1005.3633.

[18]  A. Trabelsi,et al.  Exact solution of the one-dimensional Klein–Gordon equation with scalar and vector linear potentials in the presence of a minimal length , 2010 .

[19]  V. Mukhanov,et al.  Introduction to Quantum Effects in Gravity , 2007 .

[20]  B. A. Kagali,et al.  Energy profile of the one-dimensional Klein–Gordon oscillator , 2007 .

[21]  Andrés Gomberoff,et al.  Lectures on quantum gravity , 2005 .

[22]  M. Mohadesi,et al.  The Klein-Gordon and the Dirac Oscillators in a Noncommutative Space , 2004, hep-th/0412122.

[23]  T. Jacobson Introduction to Quantum Fields in Curved Spacetime and the Hawking Effect , 2003, gr-qc/0308048.

[24]  Radosław Szmytkowski,et al.  Completeness of the Dirac oscillator eigenfunctions , 2001 .

[25]  E. Elizalde Explicit zeta functions for bosonic and fermionic fields on a non-commutative toroidal spacetime† , 2000, hep-th/0012154.

[26]  Alexander Poularikas,et al.  The Mellin Transform , 1998 .

[27]  E. Elizalde Analysis of an inhomogeneous generalized Epstein–Hurwitz zeta function with physical applications , 1994 .

[28]  K. Krori,et al.  Exact scalar and spinor solutions in the field of a stationary cosmic string , 1994 .

[29]  A. L. Salas-Brito,et al.  Conformal invariance in a Dirac oscillator , 1992 .

[30]  M. Moreno,et al.  Covariance, CPT and the Foldy-Wouthuysen transformation for the Dirac oscillator , 1989 .

[31]  M. Moshinsky,et al.  The Dirac oscillator , 1989 .

[32]  K. Krori,et al.  Exact scalar and spinor solutions in some rotating universes , 1988 .