DME Detection using LBP Features

A system for detecting Diabetic Macular Edema (DME) using Optical Coherence Tomography (OCT) volumes is presented. In preprocessing stage noise removal and flattening of scans is done which is followed by Local binary pattern feature extraction. The extracted features are then classified using linear support vector machine classifier. The proposed system achieved an specificity and sensitivity of 100% and 86.67% respectively.

[1]  Xiaodong Wu,et al.  Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search , 2008, IEEE Transactions on Medical Imaging.

[2]  Ryan P. McNabb,et al.  Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures. , 2013, American journal of ophthalmology.

[3]  W. Marsden I and J , 2012 .

[4]  Kenneth W. Tobin,et al.  Textureless Macula Swelling Detection With Multiple Retinal Fundus Images , 2011, IEEE Transactions on Biomedical Engineering.

[5]  James M. Rehg,et al.  Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding , 2011, Medical Image Anal..

[6]  Sina Farsiu,et al.  Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. , 2014, Biomedical optics express.

[7]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[8]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[9]  Xiaodong Wu,et al.  Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images , 2009, IEEE Transactions on Medical Imaging.

[10]  Barry Cense,et al.  Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging. , 2005, Archives of ophthalmology.

[11]  Joseph A. Izatt,et al.  Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation , 2010, Optics express.

[12]  Milan Sonka,et al.  Optimal retinal cyst segmentation from OCT images , 2016, SPIE Medical Imaging.

[13]  Serge J. Belongie,et al.  Behavior recognition via sparse spatio-temporal features , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[14]  Bram van Ginneken,et al.  Automated age-related macular degeneration classification in OCT using unsupervised feature learning , 2015, Medical Imaging.

[15]  Dinesh Kumar,et al.  Validating retinal fundus image analysis algorithms: issues and a proposal. , 2013, Investigative ophthalmology & visual science.

[16]  F. Mériaudeau,et al.  Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection , 2016, Journal of ophthalmology.

[17]  M. Sonka,et al.  Retinal Imaging and Image Analysis. , 2010, IEEE transactions on medical imaging.

[18]  Juan Carlos Niebles,et al.  Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words , 2006, BMVC.

[19]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..