Present-day oxidative subsidence of organic soils and mitigation in the Sacramento-San Joaquin Delta, California, USA

Subsidence of organic soils in the Sacramento-San Joaquin Delta threatens sustainability of the California (USA) water supply system and agriculture. Land-surface elevation data were collected to assess present-day subsidence rates and evaluate rice as a land use for subsidence mitigation. To depict Delta-wide present-day rates of subsidence, the previously developed SUBCALC model was refined and calibrated using recent data for CO2 emissions and land-surface elevation changes measured at extensometers. Land-surface elevation change data were evaluated relative to indirect estimates of subsidence and accretion using carbon and nitrogen flux data for rice cultivation. Extensometer and leveling data demonstrate seasonal variations in land-surface elevations associated with groundwater-level fluctuations and inelastic subsidence rates of 0.5–0.8 cm yr–1. Calibration of the SUBCALC model indicated accuracy of ±0.10 cm yr–1 where depth to groundwater, soil organic matter content and temperature are known. Regional estimates of subsidence range from <0.3 to >1.8 cm yr–1. The primary uncertainty is the distribution of soil organic matter content which results in spatial averaging in the mapping of subsidence rates. Analysis of leveling and extensometer data in rice fields resulted in an estimated accretion rate of 0.02–0.8 cm yr–1. These values generally agreed with indirect estimates based on carbon fluxes and nitrogen mineralization, thus preliminarily demonstrating that rice will stop or greatly reduce subsidence. Areas below elevations of –2 m are candidate areas for implementation of mitigation measures such as rice because there is active subsidence occurring at rates greater than 0.4 cm yr–1.RésuméL’affaissement des sols organiques dans le Delta de Sacramento-San Joaquin menace la durabilité du système d’approvisionnement en eau et de l’agriculture de la Californie (Etats-Unis d’Amérique). Des données d’altitude de la surface topographique ont été collectées dans le but d’estimer le taux d’affaissement actuel des sols et d’évaluer l’occupation des sols par des rizières en tant que moyen d’atténuation de l’affaissement des sols. Pour décrire les taux actuels d’affaissement des sols à l’échelle du Delta, le modèle SUBCALC développé précédemment a été affiné et calé grâce à l’utilisation des données récentes sur les émissions de CO2 et des variations d’altitude de la surface topographique enregistrées par des extensomètres. Les données de variations d’altitude de la surface topographique ont été évaluées par rapport aux estimations indirectes de l’affaissement du sol et de son accroissement basées sur les données de flux de carbone et d’azote au niveau des rizières. Les données d’extensiométrie et de nivellement montrent que les variations saisonnières de l’altitude de la surface topographique associées aux fluctuations des niveaux piézométriques et des taux d’affaissement inélastique du sol compris entre 0.5 et 0.8 cm an–1. Le calage du modèle SUBCALC indique une précision de ±0.10 cm an –1 là où la profondeur de la nappe, la teneur en matière organique du sol et la température sont connues. Les estimations régionales de l’affaissement du sol sont compris entre <0.3 à >1.8 cm an–1. L’incertitude principale est la distribution de la teneur en matière organique du sol qui conduit à un lissage spatial dans la cartographie des taux d’affaissement des sols. L’analyse des données de nivellement et d’extensiométrie dans les rizières conduit à un taux d’accroissement estimé entre 0.02 et 0.8 cm an–1. Ces valeurs sont généralement en accord avec les estimations indirectes basées sur les flux de carbone et de la minéralisation de l’azote qui indiquent a priori que le riz stoppera ou réduira de manière substantielle l’affaissement du sol. Les zones d’altitude inférieure à –2 m sont des zones candidates pour la mise en œuvre de mesures d’atténuation telles que la culture du riz car il s’y produit un affaissement du sol actif avec des taux supérieurs à 0.4 cm an–1.ResumenLa subsidencia de los suelos orgánicos en el Delta de Sacramento-San Joaquín amenaza la sostenibilidad del sistema de suministro de agua y la agricultura en California (EE.UU.). Se recolectaron datos de elevación de la superficie del terreno para evaluar las tasas de subsidencia actuales y evaluar el cultivo de arroz como un uso de la tierra para la mitigación de la subsidencia. Se refinó y calibró el modelo SUBCALC desarrollado previamente para describir las tasas de la subsidencia en el ancho actual del Delta, usando los datos más recientes de las emisiones de CO2 y los cambios en la elevación de la superficie del terreno medidos con extensómetros. Se evaluaron los datos de cambio de la elevación de la superficie del terreno con respecto a las estimaciones indirectas de la subsidencia y la acumulación de carbono a partir de datos y el flujo de nitrógeno para el cultivo de arroz. Los datos de extensómetros y de nivelación demuestran variaciones estacionales en las elevaciones de la superficie terrestre asociados a las fluctuaciones del nivel del agua subterránea y tasas de subsidencia inelásticas de 0.5 a 0.8 cm año–1. La calibración del modelo SUBCALC indicó una precisión de ±0.10 cm año–1, donde son conocidas la profundidad del agua subterránea, el contenido de materia orgánica del suelo y la temperatura. Las estimaciones regionales de subsidencia varía de <0.3 a >1.8 cm yr–1. La principal incertidumbre es la distribución del contenido de materia orgánica en el suelo que resulta del promedio espacial en el mapeo de las tasas de subsidencia. El análisis de los datos de nivelación y extensómetro en los campos de arroz resultó en una tasa de acreción estimada entre 0.02 y 0.8 cm yr–1. Estos valores en general concuerdan con las estimaciones indirectas basadas en los flujos de carbono y nitrógeno, lo que demuestra en forma preliminar que la mineralización del arroz va a detener o reducir en gran medida la subsidencia. Las áreas por debajo de elevaciones de –2 m son áreas examinadas para la implementación de medidas de mitigación, tales como el cultivo de arroz debido a que no hay lugar para un ritmo de subsidencia activa de más de 0.4 cm año–1.摘要沙加缅度河—圣华金河三角洲有机土壤的下沉威胁着(美国)加利佛尼亚州供水系统和农业的可持续性。收集了地面高程资料以评价目前的下沉速率并且评估了土地种植水稻减缓下沉的作用。为了描述三角洲范围内目前的下沉速度,采用目前的CO2排放资料和伸长仪测量的地面高程变化对先前开发的SUBCALC模型进行了改进和校正。针对利用水稻种植碳和氮通量资料得到的间接下沉和吸积量估算结果,对地表高程变化资料进行了评估。伸长仪和水准测量资料显示了地表高程变化的季节性变化与地下水位波动及0.5 至 0.8 cm yr–1的非弹性下沉速度有关。在地下水深度、土壤有机物含量和温度已知的情况下,SUBCALC模型校正表明精确度为±0.10 cm yr–1。区域下沉的估算范围为 < 0.3 至 >1.8 cm yr–1。主要的不确定性为土壤有机物含量的分布状况,这种不确定性会导致绘制下沉速度时的空间平均值。水稻田中的水准测量和伸长仪资料分析得出的吸积率估算值为0.02 至 0.8 cm yr–1。这些值通常与根据碳通量和氮矿化作用得到的间接估算值一致,从而初步展示,水稻能阻止或减少下沉。高程低于–2 m的区域是实施减缓措施诸如种植水稻的候选区域,因为在这些区域将会有速度大于0.4 cm yr–1的下沉。ResumoA subsidência dos organossolos no Delta dos rios Sacramento-San Joaquin põe em risco a sustentabilidade do sistema de abastecimento de água e da agricultura do estado da Califórnia (EUA). Foram coletados dados de elevação da superfície do solo para estimar as taxas atuais de subsidência e avaliar o uso de cultivo de arroz para mitigar a subsidência. Para simular as taxas atuais de subsidência da região do Delta, o modelo SUBCALC, desenvolvido anteriormente, foi refinado e calibrado utilizando dados recentes de emissões de CO2 e mudanças na elevação do terreno obtidas com extensômetros. Os dados de mudança na elevação foram avaliados em relação a estimativas indiretas de subsidência e acreção, utilizando dados de fluxo de carbono e nitrogênio no cultivo de arroz. Os dados dos extensômetros e de nivelamento demonstraram variações sazonais de elevações do terreno, associados a flutuações do nível da água subterrânea e taxas de subsidência inelásticas que variam de 0.5 a 0.8 cm ano–1. A calibração do modelo SUBCALC indicou precisão de ±0.10 cm por ano–1, onde a profundidade das águas subterrâneas e o teor de matéria orgânica e temperatura do solo eram conhecidos. As estimativas regionais de subsidência variam de <0.3 a >1.8 cm ano–1. A principal incerteza nas estimativas de subsidência modeladas é a distribuição do conteúdo de matéria orgânica do solo. Porem, as taxas mapeadas de subsidência representam médias em áreas de solos mapeados com teor de materia organica semelhantes. Análises dos dados de nivelamento e dos extensômetros em campos de produção de arroz, resultaram em uma taxa de acreção estimada de 0.02 a 0.8 cm por ano–1. Estes valores geralmente concordam com estimativas indiretas baseadas em fluxos de carbono e a mineralização do nitrogênio, portanto, indicando que o cultivo de arroz ira parar ou reduzira significativamente o processo de subsidência. Áreas com elevação inferior a –2 m são candidatas para a implementação de medidas de mitigação como o cultivo de arroz, por haver subsidência ativa ocorrendo com taxas superiores a 0.4 cm por ano–1.

[1]  T. Brown,et al.  Peat Accretion Histories During the Past 6,000 Years in Marshes of the Sacramento–San Joaquin Delta, CA, USA , 2009 .

[2]  G. Gambolati,et al.  Subsidence due to peat oxidation and impact on drainage infrastructures in a farmland catchment south of the Venice Lagoon , 2006 .

[3]  J. Couwenberg,et al.  Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations. , 2013 .

[4]  Takashi Hirano,et al.  Effects of disturbances on the carbon balance of tropical peat swamp forests , 2012 .

[5]  E. Davidson,et al.  The Dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales , 2012 .

[6]  Stuart Rojstaczer,et al.  Subsidence of agricultural lands in the Sacramento‐San Joaquin Delta, California: Role of aqueous and gaseous carbon fluxes , 1996 .

[7]  Steven J. Deverel,et al.  Impounded Marshes on Subsided Islands: Simulated Vertical Accretion, Processes, and Effects, Sacramento-San Joaquin Delta, CA USA , 2014 .

[8]  Xixi Lu,et al.  Subsidence and carbon loss in drained tropical peatlands , 2012 .

[9]  D. Baldocchi,et al.  Agricultural peatland restoration: effects of land‐use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento‐San Joaquin Delta , 2015, Global change biology.

[10]  L. H. Allen,et al.  Organic soil subsidence , 1984 .

[11]  W. Horwath,et al.  Estimating Annual Soil Carbon Loss in Agricultural Peatland Soils Using a Nitrogen Budget Approach , 2015, PloS one.

[12]  I. Prentice,et al.  Peatlands and Climate Change , 2016 .

[13]  R. Fujii,et al.  Hydrologic Treatments Affect Gaseous Carbon Loss From Organic Soils, Twitchell Island, California, October 1995-December 1997 , 2000 .

[14]  Steven J. Deverel,et al.  Historic, Recent, and Future Subsidence, Sacramento-San Joaquin Delta, California, USA , 2010 .

[15]  C. J. Schothorst Subsidence of low moor peat soils in the western Netherlands , 1977 .

[16]  R. Tate Microbial Oxidation of Organic Matter of Histosols , 1980 .

[17]  Sacramento-San Joaquin Delta,et al.  Impounded Marshes on Subsided Islands: Simulated Vertical Accretion, Processes, and Effects, , 2014 .

[18]  Delta Geomorphology,et al.  Technical Memorandum: Delta Risk Management Strategy (DRMS) Phase 1 , 2007 .

[19]  Jeffrey F. Mount,et al.  Subsidence, Sea Level Rise, and Seismicity in the Sacramento-San Joaquin Delta , 2005 .

[20]  J. Mount,et al.  Subsidence, Sea Level Rise, Seismicity in the Sacramento-San Joaquin Delta: Report to the Levee Integrity Subcommittee of the California Bay-Delta Authority Independent Science Board , 2004 .

[21]  D. Bossio,et al.  Dissolved organic carbon and disinfection by-product precursor release from managed peat soils. , 2004, Journal of environmental quality.

[22]  Sang-Ho Yun,et al.  Study of movement and seepage along levees using DINSAR and the airborne UAVSAR instrument , 2012, Remote Sensing.

[23]  Giuseppe Gambolati,et al.  Long term peatland subsidence: Experimental study and modeling scenarios in the Venice coastland , 2011 .

[24]  Scott Hensley,et al.  Characterizing land surface change and levee stability in the Sacramento-San Joaquin Delta using UAVSAR radar imagery , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[25]  N. Hobbs Mire morphology and the properties and behaviour of some British and foreign peats , 1986, Quarterly Journal of Engineering Geology.

[26]  Oliver Sonnentag,et al.  Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta , 2012 .

[27]  J. Browder,et al.  Systems model of carbon transformations in soil subsidence , 1978 .

[28]  D. A. Cohen,et al.  Feasibility study of differential SAR interferometry for subsidence monitoring in the Sacramento-San Joaquin Delta , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[29]  R. Tate EFFECT OF FLOODING ON MICROBIAL ACTIVITIES IN ORGANIC SOILS: CARBON METABOLISM , 1979 .

[30]  F. Hopf Levee Failures in the Sacramento - San Joaquin River Delta: Characteristics and Perspectives , 2011 .

[31]  Evolution of Arability and Land Use, Sacramento–San Joaquin Delta, California , 2015 .

[32]  W. W. Weir Subsidence of peat lands of the Sacramento-San Joaquin delta, California. , 1950 .

[33]  S. Rojstaczer,et al.  Land subsidence in drained histosols and highly organic mineral soils of California , 1995 .

[34]  PEAT ACCRETION HISTORIES DURING THE PAST 6000 YEARS IN MARSHES OF THE SACRAMENTO - SAN JOAQUIN DELTA, CALIFORNIA, USA , 2009 .

[35]  H. Cubizolle,et al.  Mires and Histosols in French Guiana (South America): new data relating to location and area , 2013 .

[36]  S. Rojstaczer,et al.  Evaluation of selected data to assess the causes of subsidence in the Sacramento-San Joaquin Delta, California , 1991 .

[37]  Charles Werner,et al.  Contemporaneous Subsidence and Levee Overtopping Potential, Sacramento-San Joaquin Delta, California , 2012 .

[38]  S. Rojstaczer,et al.  Time dependence in atmospheric carbon inputs from drainage of organic soils , 1993 .

[39]  W. G. Duncan,et al.  CO2 evolution from Florida organic soils. , 1970 .

[40]  G. Bawden,et al.  Three-dimensional imaging, change detection, and stability assessment during the centerline trench levee seepage experiment using terrestrial light detection and ranging technology, Twitchell Island, California, 2012 , 2014 .

[41]  I. Overeem,et al.  Sinking deltas due to human activities , 2009 .

[42]  R. Tate Effect of several environmental parameters on carbon metabolism in histosols , 1980, Microbial Ecology.

[43]  J. Day,et al.  High precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table , 1993 .

[44]  J. Drexler,et al.  The legacy of wetland drainage on the remaining peat in the Sacramento — San Joaquin Delta, California, USA , 2009, Wetlands.

[45]  Mark R. Finlay,et al.  Processes Affecting Agricultural Drainwater Quality and Organic Carbon Loads in California's Sacramento–San Joaquin Delta , 2007 .

[46]  D. Lettenmaier,et al.  A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States* , 2002 .

[47]  Miranda S. Fram,et al.  Subsidence Reversal in a Re-established Wetland in the Sacramento-San Joaquin Delta, California, USA , 2008 .

[48]  M. Dettinger,et al.  Climate and floods still govern California levee breaks , 2007 .

[49]  Nikola P. Prokopovich Subsidence of Peat in California and Florida , 1985 .

[50]  Michael J. Vepraskas,et al.  Estimating primary and secondary subsidence in an organic soil 15, 20, and 30 years after drainage , 2006, Wetlands.

[51]  L. Schipper,et al.  Subsidence rates and carbon loss in peat soils following conversion to pasture in the Waikato Region, New Zealand , 2002 .