On the Semi-Automatic Retrieval of Biophysical Parameters Based on Spectral Index Optimization

Regression models based on spectral indices are typically empirical formulae enabling the mapping of biophysical parameters derived from Earth Observation (EO) data. Due to its empirical nature, it remains nevertheless uncertain to what extent a selected regression model is the most appropriate one, until all band combinations and curve fitting functions are assessed. This paper describes the application of a Spectral Index (SI) assessment toolbox in the Automated Radiative Transfer Models Operator (ARTMO) package. ARTMO enables semi-automatic retrieval and mapping of biophysical parameters from optical remote sensing observations. The SI toolbox facilitates the assessment of biophysical parameter retrieval accuracy of established as well as new and generic SIs. For instance, based on the SI formulation used, all possible band combinations of formulations with up to ten bands can be defined and evaluated. Several options are available in the SI assessment: calibration/validation data partitioning, the addition of noise and the definition of curve fitting models. To illustrate its functioning, all two-band combinations according to simple ratio (SR) and normalized difference (ND) formulations as well as various fitting functions (linear, exponential, power, logarithmic, polynomial) have been assessed. HyMap imaging spectrometer (430–2490 nm) data obtained during the SPARC-2003 campaign in Barrax, Spain, have been used to extract leaf area index (LAI) and leaf chlorophyll content (LCC) estimates. For both SR and ND formulations the most sensitive regions have been identified for two-band combinations of green (539–570 nm) with longwave SWIR (2421–2453 nm) for LAI (r2: 0.83) and far-red (692 nm) with NIR (1340 nm) or shortwave SWIR (1661–1686 nm) for LCC (r2: 0.93). Polynomial, logarithmic and linear fitting functions led to similar best correlations, though spatial differences emerged when applying the functions to HyMap imagery. We suggest that a systematic SI assessment is a strong requirement in the quality assurance approach for accurate biophysical parameter retrieval.

[1]  R. Houborg,et al.  Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data , 2008 .

[2]  John R. Miller,et al.  Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy , 2005 .

[3]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[4]  A. Bondeau,et al.  Combining agricultural crop models and satellite observations: from field to regional scales , 1998 .

[5]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[6]  W. Verhoef,et al.  Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data , 2007 .

[7]  Simon J. Hook,et al.  Synergies Between VSWIR and TIR Data for the Urban Environment: An Evaluation of the Potential for the Hyperspectral Infrared Imager (HyspIRI) , 2012 .

[8]  Michael E. Schaepman,et al.  A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[9]  A. Gitelson,et al.  Application of Spectral Remote Sensing for Agronomic Decisions , 2008 .

[10]  W. Cohen,et al.  Hyperspectral versus multispectral data for estimating leaf area index in four different biomes , 2004 .

[11]  Lammert Kooistra,et al.  Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data , 2012, Remote. Sens..

[12]  C. Donlon,et al.  The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission , 2012 .

[13]  C. François,et al.  Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements , 2004 .

[14]  Luis Alonso,et al.  Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Miina Rautiainen,et al.  Reduced simple ratio better than NDVI for estimating LAI in Finnish pine and spruce stands , 2004 .

[16]  D. Roberts,et al.  Using Imaging Spectroscopy to Study Ecosystem Processes and Properties , 2004 .

[17]  Roberta E. Martin,et al.  PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments , 2008 .

[18]  Luis Alonso,et al.  Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content , 2011, Sensors.

[19]  Pol Coppin,et al.  A dorsiventral leaf radiative transfer model: Development, validation and improved model inversion techniques , 2009 .

[20]  J. Moreno,et al.  RETRIEVAL OF VEGETATION BIOPHYSICAL VARIABLES FROM CHRIS/PROBA DATA IN THE SPARC CAMPAING , 2004 .

[21]  Ranga B. Myneni,et al.  Estimation of global leaf area index and absorbed par using radiative transfer models , 1997, IEEE Trans. Geosci. Remote. Sens..

[22]  A. Gonsamo Normalized sensitivity measures for leaf area index estimation using three-band spectral vegetation indices , 2011 .

[23]  S. Tarantola,et al.  Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1 - Theoretical approach , 2002 .

[24]  Nadine Gobron,et al.  Optical remote sensing of vegetation: Modeling, caveats, and algorithms , 1995 .

[25]  Demetrio Labate,et al.  The PRISMA payload optomechanical design, a high performance instrument for a new hyperspectral mission , 2009 .

[26]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[27]  Luis Alonso,et al.  Retrieval of Vegetation Biophysical Parameters Using Gaussian Process Techniques , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[28]  N. Broge,et al.  Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data , 2002 .

[29]  L. Guanter,et al.  Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data , 2007 .

[30]  Raghavan Srinivasan,et al.  Using Satellite and Field Data with Crop Growth Modeling to Monitor and Estimate Corn Yield in Mexico , 2002 .

[31]  M. Schlerf,et al.  Remote sensing of forest biophysical variables using HyMap imaging spectrometer data , 2005 .

[32]  José F. Moreno,et al.  Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model , 2013, Remote. Sens..

[33]  Jan G. P. W. Clevers,et al.  Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3 , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[34]  K. Soudani,et al.  Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass , 2008 .

[35]  J. Peñuelas,et al.  The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. , 1994 .

[36]  José F. Moreno,et al.  Toward a Semiautomatic Machine Learning Retrieval of Biophysical Parameters , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[37]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[38]  Peter R. J. North,et al.  Three-dimensional forest light interaction model using a Monte Carlo method , 1996, IEEE Trans. Geosci. Remote. Sens..

[39]  Yuri A. Gritz,et al.  Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. , 2003, Journal of plant physiology.

[40]  Irshad A. Mohammed,et al.  Advances in Hyperspectral Remote Sensing of Vegetation and Agricultural Crops , 2014, Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation.

[41]  Alfredo Huete,et al.  Advances in hyperspectral remote sensing of vegetation and agricultural croplands: Chapter 1 , 2011 .

[42]  Luis Alonso,et al.  Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3 , 2012 .

[43]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[44]  L. Alonso,et al.  ADVANCES AND LIMITATIONS IN A PARAMETRIC GEOMETRIC CORRECTION OF CHRIS/PROBA DATA , 2005 .

[45]  J. Chen,et al.  Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images , 1996 .

[46]  Prasad S. Thenkabail,et al.  Evaluation of Narrowband and Broadband Vegetation Indices for Determining Optimal Hyperspectral Wavebands for Agricultural Crop Characterization , 2002 .

[47]  S. Leblanc,et al.  A Shortwave Infrared Modification to the Simple Ratio for LAI Retrieval in Boreal Forests: An Image and Model Analysis , 2000 .

[48]  R. Jenssen,et al.  1 THE HYMAP TM AIRBORNE HYPERSPECTRAL SENSOR : THE SYSTEM , CALIBRATION AND PERFORMANCE , 1998 .

[49]  John R. Miller,et al.  Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..

[50]  M. Schaepman,et al.  Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval , 2010 .

[51]  Nadine Gobron,et al.  Advanced vegetation indices optimized for up-coming sensors: Design, performance, and applications , 2000, IEEE Trans. Geosci. Remote. Sens..

[52]  D. Lobell,et al.  Moisture effects on soil reflectance , 2002 .

[53]  U. Benz,et al.  The EnMAP hyperspectral imager—An advanced optical payload for future applications in Earth observation programmes , 2006 .

[54]  Bernard Pinty,et al.  Designing optimal spectral indexes for remote sensing applications , 1996, IEEE Trans. Geosci. Remote. Sens..

[55]  A. Huete,et al.  Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission , 2013 .

[56]  M. Schaepman,et al.  Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data , 2008 .

[57]  M. Ashton,et al.  Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications , 2004 .

[58]  P. Curran Remote sensing of foliar chemistry , 1989 .

[59]  Clement Atzberger,et al.  Derivation of biophysical variables from Earth observation data: validation and statistical measures , 2012 .

[60]  P. Thenkabail,et al.  Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .

[61]  Miina Rautiainen,et al.  Sensitivity of narrowband vegetation indices to boreal forest LAI, reflectance seasonality and species composition , 2013 .

[62]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[63]  L. Alonso,et al.  A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems , 2013 .

[64]  Philip Lewis,et al.  The fourth radiation transfer model intercomparison (RAMI‐IV): Proficiency testing of canopy reflectance models with ISO‐13528 , 2013 .

[65]  A. Skidmore,et al.  Leaf Area Index derivation from hyperspectral vegetation indicesand the red edge position , 2009 .