A Constructive Formalization of the Fundamental Theorem of Calculus

We have finished a constructive formalization in the theorem prover Coq of the Fundamental Theorem of Calculus, which states that differentiation and integration are inverse processes. In this formalization, we have closely followed Bishop's work [4]. In this paper, we describe the formalization in some detail, focusing on how some of Bishop's original proofs had to be refined, adapted or redone from scratch.

[1]  Herman Geuvers,et al.  Equational Reasoning via Partial Reflection , 2000, TPHOLs.

[2]  A. Heyting,et al.  Intuitionism: An introduction , 1956 .

[3]  Herman Geuvers,et al.  A Constructive Algebraic Hierarchy in Coq , 2002, J. Symb. Comput..

[4]  van Ls Bert Benthem Jutting Checking Landau's "Grundlagen" in the Automath system : Parts of chapters 0, 1 and 2 (Introduction, Preparation, Translation) , 1994 .

[5]  M. Oostdijk Generation and presentation of formal mathematical documents , 2001 .

[6]  Herman Geuvers,et al.  Constructive Reals in Coq: Axioms and Categoricity , 2000, TYPES.

[7]  John Harrison,et al.  A Machine-Checked Theory of Floating Point Arithmetic , 1999, TPHOLs.

[8]  Bruno Dutertre,et al.  Elements of Mathematical Analysis in PVS , 1996, TPHOLs.

[9]  Abbas Edalat,et al.  Numerical Integration with Exact Real Arithmetic , 1999, ICALP.

[10]  Herman Geuvers,et al.  The algebraic hierarchy of the FTA project , 2002 .

[11]  Micaela Mayero,et al.  Formalisation et automatisation de preuves en analyses réelle et numérique , 2001 .

[12]  J. van Leeuwen,et al.  Theorem Proving in Higher Order Logics , 1999, Lecture Notes in Computer Science.

[13]  Micaela Mayero,et al.  Using Theorem Proving for Numerical Analysis (Correctness Proof of an Automatic Differentiation Algorithm) , 2002, TPHOLs.

[14]  A. Friedman Foundations of modern analysis , 1970 .

[15]  Abbas Edalat,et al.  A new representation for exact real numbers , 1997, MFPS.

[16]  van Ls Bert Benthem Jutting,et al.  Checking Landau's “Grundlagen” in the Automath System: Appendices 3 and 4 (The PN-lines; Excerpt for “Satz 27”) , 1994 .

[17]  Hanne Gottliebsen,et al.  Transcendental Functions and Continuity Checking in PVS , 2000, TPHOLs.

[18]  MA John Harrison PhD Theorem Proving with the Real Numbers , 1998, Distinguished Dissertations.