Efficient polynomial root-refiners: A survey and new record efficiency estimates

A typical iterative polynomial root-finder begins with a relatively slow process of computing a crude but sufficiently close initial approximation to a root and then rapidly refines it. The policy of using the same iterative process at both stages of computing an initial approximation and refining it, however, is neither necessary nor most effective. The efficiency of an iteration at the former stage resists formal study and is usually decided empirically, whereas formal study of the efficiency at the latter stage of refinement is not hard and is the subject of the current paper. We define this local efficiency as log"1"0qd=log"1"0(q^1^/^d) (q is the convergence order, and d is the number of function evaluations per iteration); it is inversely proportional to the number of flops involved. Assuming that about 2n flops are needed per evaluation of a polynomial of a degree n at a single point, we extend the definition to cover the recent matrix methods for polynomial root-finding as well as some methods that combine n approximations to all n roots to refine them simultaneously. For the approximation of a single root of a polynomial of degree n, the maximum local efficiency achieved so far is log"1"02~0.301..., but we show its growth to infinity for simultaneous approximation of all n roots as n grows to infinity.

[1]  Arthur G. Werschuiz Maximal order for multipoint methods with memory using hermitian information , 1981 .

[2]  Arnold Schönhage,et al.  The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .

[3]  Qingbiao Wu,et al.  A new family of eighth-order iterative methods for solving nonlinear equations , 2009, Appl. Math. Comput..

[4]  A. Householder The numerical treatment of a single nonlinear equation , 1970 .

[5]  Louis Brand,et al.  The Companion Matrix and Its Properties , 1964 .

[6]  K. Weierstrass Neuer Beweis des Fundamentalsatzes der Algebra , 2013 .

[7]  Dario Bini,et al.  Numerical computation of polynomial zeros by means of Aberth's method , 1996, Numerical Algorithms.

[8]  H. T. Kung,et al.  Optimal Order of One-Point and Multipoint Iteration , 1974, JACM.

[9]  Jim Euchner Design , 2014, Catalysis from A to Z.

[10]  Alexandre Ostrowski Recherches sur la méthode de graeffe et les zéros des polynomes et des séries de laurent , 1940 .

[11]  Victor Y. Pan,et al.  Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations , 2005, Numerische Mathematik.

[12]  Carsten Carstensen,et al.  Linear construction of companion matrices , 1991 .

[13]  Joseph F. Traub,et al.  Optimal Iterative Processes: Theorems and Conjectures , 1971, IFIP Congress.

[14]  M. Mahoney,et al.  History of Mathematics , 1924, Nature.

[15]  J. Kuntzmann,et al.  Solutions Numeriques des Equations Algebriques , 1963 .

[16]  Giuseppe Fiorentino,et al.  Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.

[17]  R. F. King,et al.  Methods without secant steps for finding a bracketed root , 1976, Computing.

[18]  Victor Y. Pan,et al.  Root-finding by expansion with independent constraints , 2011, Comput. Math. Appl..

[19]  Beny Neta,et al.  On a family of multipoint methods for non-linear equations , 1981 .

[20]  I. Gohberg,et al.  Fast QR Eigenvalue Algorithms for Hessenberg Matrices Which Are Rank-One Perturbations of Unitary Matrices , 2007, SIAM J. Matrix Anal. Appl..

[21]  Jianlin Xia,et al.  A Fast QR Algorithm for Companion Matrices , 2007 .

[22]  Ulrich W. Kulisch,et al.  Nonlinear Equations in One Variable , 1995 .

[23]  James Renegar,et al.  On the worst-case arithmetic complexity of approximating zeros of polynomials , 1987, J. Complex..

[24]  A. C. Hindmarsh,et al.  Optimality in a Class of Rootfinding Algorithms , 1972 .

[25]  James H. Curry,et al.  On zero finding methods of higher order from data at one point , 1989, J. Complex..

[26]  G. Stewart On the Convergence of Sebastião E. Silva's Method for Finding a Zero of a Polynomial , 1970 .

[27]  Miodrag S. Petkovic,et al.  On computational efficiency of the iterative methods for the simultaneous approximation of polynomial zeros , 1986, TOMS.

[28]  Ludwig Elsner,et al.  A remark on simultaneous inclusions of the zeros of a polynomial by Gershgorin's theorem , 1973 .

[29]  Young Hee Geum,et al.  A biparametric family of optimally convergent sixteenth-order multipoint methods with their fourth-step weighting function as a sum of a rational and a generic two-variable function , 2011, J. Comput. Appl. Math..

[30]  Beny Neta,et al.  A new family of higher order methods for solving equations , 1983 .

[31]  V. Pan,et al.  Inverse power and Durand-Kerner iterations for univariate polynomial root-finding , 2002 .

[32]  Oliver Aberth,et al.  Iteration methods for finding all zeros of a polynomial simultaneously , 1973 .

[33]  J. McNamee A 2002 update of the supplementary bibliography on roots of polynomials , 2002 .

[34]  Enrico Bozzo,et al.  qd-Type Methods for Quasiseparable Matrices , 2011, SIAM J. Matrix Anal. Appl..

[35]  Victor Y. Pan,et al.  Numerical methods for roots of polynomials , 2007 .

[36]  Stephen A. Vavasis,et al.  Solving Polynomials with Small Leading Coefficients , 2005, SIAM J. Matrix Anal. Appl..

[37]  Florian A. Potra,et al.  On Two Higher Order Enclosing Methods of J. W. Schmidt , 1988 .

[38]  Peter Kirrinnis,et al.  Partial Fraction Decomposition in (z) and Simultaneous Newton Iteration for Factorization in C[z] , 1998, J. Complex..

[39]  Donald Nudds,et al.  The Use of Rational Functions in the Iterative Solution of Equations on a Digital Computer , 1965, Computer/law journal.

[40]  F. Uhlig,et al.  The ${\cal {D Q R}}$ algorithm, basic theory, convergence, and conditional stability , 1997 .

[41]  C. A. Neff,et al.  An O(n^1+epsilon log b) Algorithm for the Complex Roots Problem , 1994, FOCS 1994.

[42]  Dario Bini,et al.  ON THE SHIFTED QR ITERATION APPLIED TO COMPANION MATRICES , 2004 .

[43]  Dario Bini,et al.  A Fast Implicit QR Eigenvalue Algorithm for Companion Matrices , 2010 .

[44]  Maria Italia Gualtieri,et al.  A modification of Muller’s method , 2006 .

[45]  Gisela Engeln-Müllges,et al.  Nonlinear Equations in One Variable , 1996 .

[46]  J. Pier Development of mathematics , 1994 .

[47]  Louis W. Ehrlich,et al.  A modified Newton method for polynomials , 1967, CACM.

[48]  Immo O. Kerner,et al.  Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen , 1966 .

[49]  Victor Y. Pan Solving Polynomials with Computers , 1998 .

[50]  Maria Italia Gualtieri,et al.  A New Iterative Method for the Computation of the Solutions of Nonlinear Equations , 2001, Numerical Algorithms.

[51]  F. M. Larkin Root finding by divided differences , 1981 .

[52]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..

[53]  Victor Y. Pan,et al.  Univariate polynomials: nearly optimal algorithms for factorization and rootfinding , 2001, ISSAC '01.

[54]  A. C. Aitken XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .

[55]  Robert M. Corless,et al.  On a Generalized Companion Matrix Pencil for Matrix Polynomials Expressed in the Lagrange Basis , 2007 .

[56]  V. Pan The amended DSeSC power method for polynomial root-finding , 2005 .

[57]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[58]  V. Pan,et al.  Improved initialization of the accelerated and robust QR-like polynomial root-finding. , 2004 .

[59]  A. Ostrowski Solution of equations and systems of equations , 1967 .

[60]  Myong-Hi Kim Computation complexity of the euler algorithms for the roots of complex polynomials , 1986 .

[61]  Bahman Kalantari,et al.  Generalization of Taylor's theorem and Newton's method via a new family of determinantal interpolation formulas and its applications , 2000 .

[62]  Victor Y. Pan,et al.  New progress in real and complex polynomial root-finding , 2011, Comput. Math. Appl..

[63]  R. F. King Tangent methods for nonlinear equations , 1971 .

[64]  V. Pan Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .

[65]  D. E. Muller A method for solving algebraic equations using an automatic computer , 1956 .

[66]  Victor Y. Pan,et al.  Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-finding , 2002, J. Symb. Comput..

[67]  Amir Sapir,et al.  A nonstationary iterative second-order method for solving nonlinear equations , 2007, Appl. Math. Comput..

[68]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[69]  John H. Reif,et al.  An O(n/sup 1+/spl epsiv// log b) algorithm for the complex roots problem , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[70]  R. J.,et al.  A Family of Methods for Solving Nonlinear Equations Using Quadratic Interpolation , 2005 .

[71]  M. Petkovic,et al.  Point estimation of simultaneous methods for solving polynomial equations , 2007 .

[72]  Paul Van Dooren,et al.  Implicit double shift QR-algorithm for companion matrices , 2010, Numerische Mathematik.

[73]  Åke Björck,et al.  A new high order method of regula falsi type for computing a root of an equation , 1973 .

[74]  F. Uhlig,et al.  General polynomial roots and their multiplicities in O(N)memory and O(N 2)Time , 1999 .

[75]  Victor Norton,et al.  Algorithm 631: Finding a bracketed zero by Larkin's method of rational interpolation , 1985, TOMS.

[76]  A. U.S.,et al.  The Amended DSeSC Power Method for Polynomial Root-Finding , 2004 .

[77]  J. R. Sharma,et al.  A family of methods for solving nonlinearequations using quadratic interpolation , 2004 .

[78]  A. Householder Generalizations of an algorithm of Sebastião e Silva , 1971 .

[79]  Victor Y. Pan,et al.  Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex polynomial zeros , 1995, STOC '95.

[80]  F. M. Larkin Root-finding by fitting rational functions , 1980 .

[81]  P. Henrici,et al.  Elements of Numerical Analysis , 1966 .

[82]  I. Barrodale,et al.  A Fortran program for solving a nonlinear equation by Muller's method , 1978 .