Grain Boundary Scars and Spherical Crystallography

We describe experimental investigations of the structure of two-dimensional spherical crystals. The crystals, formed by beads self-assembled on water droplets in oil, serve as model systems for exploring very general theories about the minimum-energy configurations of particles with arbitrary repulsive interactions on curved surfaces. Above a critical system size we find that crystals develop distinctive high-angle grain boundaries, or scars, not found in planar crystals. The number of excess defects in a scar is shown to grow linearly with the dimensionless system size. The observed slope is expected to be universal, independent of the microscopic potential.

[1]  H. Berg Cold Spring Harbor Symposia on Quantitative Biology.: Vol. LII. Evolution of Catalytic Functions. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987, ISBN 0-87969-054-2, xix + 955 pp., US $150.00. , 1989 .

[2]  A. Maradudin,et al.  Some static and dynamical properties of a two-dimensional Wigner crystal , 1977 .

[3]  P. Sperryn,et al.  Blood. , 1989, British journal of sports medicine.

[4]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[5]  D. Thouless,et al.  Defects and Geometry in Condensed Matter Physics , 2003 .

[6]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[7]  M. .. Moore,et al.  Symmetric patterns of dislocations in Thomson’s problem , 1999, cond-mat/9905217.

[8]  W. Busse Viral Infections of Humans , 1976, Springer US.

[9]  E. P. Ferreira,et al.  The interactions of π - -mesons with complex nuclei in the energy range (100–800) MeV. III. The interaction lengths and elastic scattering of 300 MeV π - -mesons in G5 emulsion , 1959 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  M. Jarrold Chemistry: The smallest fullerene , 2000, Nature.

[12]  M. A. Moore,et al.  Vortices in a thin-film superconductor with a spherical geometry , 1997 .

[13]  Dietmar Pum,et al.  Characterization and use of crystalline bacterial cell surface layers , 2001 .

[14]  P. Leiderer Ions at helium interfaces , 1995 .

[15]  L. Wilkinson Immunity , 1891, The Lancet.

[16]  David R. Nelson,et al.  Interacting topological defects on frozen topographies , 1999, cond-mat/9911379.

[17]  John E. Johnson,et al.  Virus Particle Explorer (VIPER), a Website for Virus Capsid Structures and Their Computational Analyses , 2001, Journal of Virology.

[18]  P. Hilton,et al.  The Euler Characteristic and Polya's Dream , 1996 .

[19]  L A Day,et al.  Pattern formation in icosahedral virus capsids: the papova viruses and Nudaurelia capensis beta virus. , 1993, Biophysical journal.

[20]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[21]  M. Bowick,et al.  Crystalline order on a sphere and the generalized Thomson problem. , 2002, Physical review letters.

[22]  D. Pum,et al.  Role of the S layer in morphogenesis and cell division of the archaebacterium Methanocorpusculum sinense , 1991, Journal of bacteriology.

[23]  A. Klug,et al.  Physical principles in the construction of regular viruses. , 1962, Cold Spring Harbor symposia on quantitative biology.