Association of Induced Hyperhomocysteinemia with Alzheimer’s Disease-Like Neurodegeneration in Rat Cortical Neurons After Global Ischemia-Reperfusion Injury

[1]  R. Pluta,et al.  Ischemic tau protein gene induction as an additional key factor driving development of Alzheimer’s phenotype changes in CA1 area of hippocampus in an ischemic model of Alzheimer’s disease , 2018, Pharmacological reports : PR.

[2]  S. Yen,et al.  Homocysteine Increases Tau Phosphorylation, Truncation and Oligomerization , 2018, International journal of molecular sciences.

[3]  R. Shytle,et al.  Therapeutic Cocktail Approach for Treatment of Hyperhomocysteinemia in Alzheimer’s Disease , 2018, Cell medicine.

[4]  R. Pluta,et al.  Autophagy, mitophagy and apoptotic gene changes in the hippocampal CA1 area in a rat ischemic model of Alzheimer’s disease , 2017, Pharmacological reports : PR.

[5]  D. Wilcock,et al.  Hyperhomocysteinemia-Induced Gene Expression Changes in the Cell Types of the Brain , 2017, ASN neuro.

[6]  Guowei Huang,et al.  Homocysteine induces mitochondrial dysfunction involving the crosstalk between oxidative stress and mitochondrial pSTAT3 in rat ischemic brain , 2017, Scientific Reports.

[7]  L. Bobermin,et al.  Homocysteine Induces Glial Reactivity in Adult Rat Astrocyte Cultures , 2017, Molecular Neurobiology.

[8]  O. Krizanova,et al.  Effect of Hyperhomocysteinemia on Redox Balance and Redox Defence Enzymes in Ischemia–Reperfusion Injury and/or After Ischemic Preconditioning in Rats , 2017, Cellular and Molecular Neurobiology.

[9]  S. Merali,et al.  Homocysteine modulates 5‐lipoxygenase expression level via DNA methylation , 2016, Aging cell.

[10]  D. Dobrota,et al.  Role of Homocysteine in the Ischemic Stroke and Development of Ischemic Tolerance , 2016, Front. Neurosci..

[11]  M. Jabłoński,et al.  Dysregulation of Autophagy, Mitophagy, and Apoptotic Genes in the Medial Temporal Lobe Cortex in an Ischemic Model of Alzheimer’s Disease , 2016, Journal of Alzheimer's disease : JAD.

[12]  Guowei Huang,et al.  Homocysteine Aggravates Cortical Neural Cell Injury through Neuronal Autophagy Overactivation following Rat Cerebral Ischemia-Reperfusion , 2016, International journal of molecular sciences.

[13]  M. Jabłoński,et al.  Alzheimer-associated presenilin 2 gene is dysregulated in rat medial temporal lobe cortex after complete brain ischemia due to cardiac arrest , 2016, Pharmacological reports : PR.

[14]  M. Adamkov,et al.  Combination of hyperhomocysteinemia and ischemic tolerance in experimental model of global ischemia in rats. , 2015, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society.

[15]  M. Jabłoński,et al.  Dysregulation of Amyloid-β Protein Precursor, β-Secretase, Presenilin 1 and 2 Genes in the Rat Selectively Vulnerable CA1 Subfield of Hippocampus Following Transient Global Brain Ischemia , 2015, Journal of Alzheimer's disease : JAD.

[16]  H. Gertz,et al.  Early neurone loss in Alzheimer’s disease: cortical or subcortical? , 2015, Acta neuropathologica communications.

[17]  S. Tyagi,et al.  Hydrogen Sulfide Epigenetically Attenuates Homocysteine‐Induced Mitochondrial Toxicity Mediated Through NMDA Receptor in Mouse Brain Endothelial (bEnd3) Cells , 2015, Journal of cellular physiology.

[18]  M. Fiuza,et al.  Differential Tiam1/Rac1 Activation in Hippocampal and Cortical Neurons Mediates Differential Spine Shrinkage in Response to Oxygen/Glucose Deprivation , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  Dong Young Lee,et al.  Association of homocysteine with hippocampal volume independent of cerebral amyloid and vascular burden , 2014, Neurobiology of Aging.

[20]  S. Merali,et al.  Homocysteine exacerbates β‐amyloid pathology, tau pathology, and cognitive deficit in a mouse model of Alzheimer disease with plaques and tangles , 2014, Annals of neurology.

[21]  B. Friguet,et al.  Protein damage, repair and proteolysis. , 2014, Molecular aspects of medicine.

[22]  Torbjörn Persson,et al.  Oxidative Stress in Alzheimer's Disease: Why Did Antioxidant Therapy Fail? , 2014, Oxidative medicine and cellular longevity.

[23]  H. Jakubowski Homocysteine in Protein Structure/Function and Human Disease , 2013, Springer Vienna.

[24]  H. Yoo,et al.  Congenital MTHFR deficiency causing early-onset cerebral stroke in a case homozygous for MTHFR thermolabile variant , 2013, Metabolic Brain Disease.

[25]  J. Dorszewska,et al.  Homocysteine and asymmetric dimethylarginine concentrations in the plasma of Alzheimer’s disease patients with varying degrees of dementia , 2013 .

[26]  Charles D. Smith,et al.  Induction of Hyperhomocysteinemia Models Vascular Dementia by Induction of Cerebral Microhemorrhages and Neuroinflammation , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  J. Myers,et al.  ENDURANCE EXERCISE TRAINING AND DIFERULOYL METHANE SUPPLEMENT: CHANGES IN NEUROTROPHIC FACTOR AND OXIDATIVE STRESS INDUCED BY LEAD IN RAT BRAIN , 2013, Biology of sport.

[28]  M. Jabłoński,et al.  Brain Ischemia Activates β- and γ-Secretase Cleavage of Amyloid Precursor Protein: Significance in Sporadic Alzheimer’s Disease , 2012, Molecular Neurobiology.

[29]  Yun Chai,et al.  Lipid peroxidation dysregulation in ischemic stroke: plasma 4-HNE as a potential biomarker? , 2012, Biochemical and biophysical research communications.

[30]  M. Jabłoński,et al.  Postischemic dementia with Alzheimer phenotype: selectively vulnerable versus resistant areas of the brain and neurodegeneration versus β-amyloid peptide. , 2012, Folia neuropathologica.

[31]  M. Adamkov,et al.  Intracellular Signaling MAPK Pathway After Cerebral Ischemia–Reperfusion Injury , 2012, Neurochemical Research.

[32]  T. Yamashima,et al.  Why are hippocampal CA1 neurons vulnerable but motor cortex neurons resistant to transient ischemia? , 2012, Journal of neurochemistry.

[33]  S. Loureiro,et al.  Homocysteine induces cytoskeletal remodeling and production of reactive oxygen species in cultured cortical astrocytes , 2010, Brain Research.

[34]  M. Firbank,et al.  Homocysteine is associated with hippocampal and white matter atrophy in older subjects with mild hypertension , 2010, International Psychogeriatrics.

[35]  C. Matté,et al.  Hyperhomocysteinemia reduces glutamate uptake in parietal cortex of rats , 2010, International Journal of Developmental Neuroscience.

[36]  A. Buffo,et al.  Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. , 2010, Biochemical pharmacology.

[37]  Jia-min Zhuo,et al.  Diet-induced hyperhomocysteinemia increases amyloid-beta formation and deposition in a mouse model of Alzheimer's disease. , 2009, Current Alzheimer research.

[38]  M. Jabłoński,et al.  Alzheimer's Mechanisms in Ischemic Brain Degeneration , 2009, Anatomical record.

[39]  Surojit Paul,et al.  Homocysteine–NMDA receptor‐mediated activation of extracellular signal‐regulated kinase leads to neuronal cell death , 2009, Journal of neurochemistry.

[40]  M. Mattson,et al.  The organotellurium compound ammonium trichloro(dioxoethylene‐0,0′) tellurate enhances neuronal survival and improves functional outcome in an ischemic stroke model in mice , 2007, Journal of neurochemistry.

[41]  W. Jagust,et al.  Profiles of neuropsychological impairment in autopsy-defined Alzheimer's disease and cerebrovascular disease. , 2007, Brain : a journal of neurology.

[42]  G. Weaving,et al.  Behavioural and Psychological Symptoms of Alzheimer Type Dementia Are Not Correlated with Plasma Homocysteine Concentration , 2006, Dementia and Geriatric Cognitive Disorders.

[43]  L. Gustafson,et al.  Plasma Homocysteine, Cobalamin/Folate Status, and Vascular Disease in a Large Population of Psychogeriatric Patients , 2006, Dementia and Geriatric Cognitive Disorders.

[44]  M. Pappolla,et al.  Hyperhomocysteinemic Alzheimer's mouse model of amyloidosis shows increased brain amyloid β peptide levels , 2006, Neurobiology of Disease.

[45]  S. Lentz,et al.  ADMA and hyperhomocysteinemia , 2005 .

[46]  S. Lentz,et al.  ADMA and hyperhomocysteinemia , 2005, Vascular medicine.

[47]  A. Benedito‐Silva,et al.  Physiological variation in plasma total homocysteine concentrations in rats. , 2005, Life sciences.

[48]  M. Shoji,et al.  Reduction of Cerebral Infarction in Stroke-Prone Spontaneously Hypertensive Rats by Statins Associated With Amelioration of Oxidative Stress , 2005, Stroke.

[49]  R. Mayeux,et al.  Stroke and the risk of Alzheimer disease. , 2003, Archives of neurology.

[50]  S. Scheff,et al.  Fluoro-jade B stains quiescent and reactive astrocytes in the rodent spinal cord. , 2003, Journal of neurotrauma.

[51]  A. McCaddon,et al.  Alzheimer’s disease and total plasma aminothiols , 2003, Biological Psychiatry.

[52]  M. Wajner,et al.  Reduction of Na+,K+-ATPase Activity in Hippocampus of Rats Subjected to Chemically Induced Hyperhomocysteinemia , 2002, Neurochemical Research.

[53]  J. Colombo,et al.  Fluoro Jade Stains Early and Reactive Astroglia in the Primate Cerebral Cortex , 2002, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[54]  H. Wiśniewski,et al.  Complete cerebral ischemia with short-term survival in rats induced by cardiac arrest. I. Extracellular accumulation of Alzheimer's β-amyloid protein precursor in the brain , 1994, Brain Research.

[55]  K. Kogure,et al.  Ischemia-induced slowly progressive neuronal damage in the rat brain , 1990, Neuroscience.

[56]  Fred Plum,et al.  Temporal profile of neuronal damage in a model of transient forebrain ischemia , 1982, Annals of neurology.

[57]  M. Jabłoński,et al.  Discrepancy in Expression of β-Secretase and Amyloid-β Protein Precursor in Alzheimer-Related Genes in the Rat Medial Temporal Lobe Cortex Following Transient Global Brain Ischemia. , 2016, Journal of Alzheimer's disease : JAD.

[58]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .