Quantum solution to the Newcomb's paradox

We show that quantum game theory offers an interesting solution to the famous Newcomb's paradox (free-will problem). Divine foreknowledge is not necessary for a successful completion of the game because quantum theory offers a way to discern human intentions in such a way that the human retain her/his free-will but cannot profit from changing decision. Possible interpretation in terms of quantum market games is proposed.

[1]  Erica Klarreich,et al.  Playing by quantum rules , 2001, Nature.

[2]  E. W. Piotrowski,et al.  Quantum bargaining games , 2002 .

[3]  D. Meyer Quantum strategies , 1998, quant-ph/9804010.

[4]  Azhar Iqbal,et al.  Darwinism in quantum systems , 2002 .

[5]  Azhar Iqbal,et al.  Entanglement and dynamic stability of Nash equilibria in a symmetric quantum game , 2001 .

[6]  Azhar Iqbal,et al.  Evolutionarily stable strategies in quantum games , 2000 .

[7]  J. Sladkowski,et al.  Quantum-like approach to financial risk: quantum anthropic principle , 2001 .

[8]  J. Eisert,et al.  Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.

[9]  A. Scott Stairway to the Mind , 1995, Springer New York.

[10]  John Preskill The Feynman processor: Quantum entanglement and the computing revolution [Book Review] , 1999 .

[11]  E. W. Piotrowski,et al.  Quantum Market Games , 2001 .

[12]  S. Banach,et al.  Sur la décomposition des ensembles de points en parties respectivement congruentes , 1924 .

[13]  Herbert Solomon,et al.  Geometric Probability , 1978, CBMS-NSF regional conference series in applied mathematics.

[14]  B. Julsgaard,et al.  Experimental long-lived entanglement of two macroscopic objects , 2001, Nature.

[15]  Edward W. Piotrowski,et al.  An Invitation to Quantum Game Theory , 2002, ArXiv.

[16]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science (2. ed.) , 1994 .

[17]  Leong Chuan Kwek,et al.  Quantum roulette: an extended quantum strategy , 2000 .

[18]  Azhar Iqbal,et al.  Quantum mechanics gives stability to a Nash equilibrium , 2002 .

[19]  Robert Nozick,et al.  Newcomb’s Problem and Two Principles of Choice , 1969 .

[20]  Isaac Levi,et al.  A Note on Newcombmania , 1982 .

[21]  E. W. Piotrowski,et al.  Trading by Quantum Rules: Quantum Anthropic Principle , 2003 .