A chromosome‐level genome of the mud crab (Scylla paramamosain estampador) provides insights into the evolution of chemical and light perception in this crustacean

Mud crabs, found throughout the Indo‐Pacific region, are coastal species that are important fisheries resources in many tropical and subtropical Asian countries. Here, we present a chromosome‐level genome assembly of a mud crab (Scylla paramamosain). The genome is 1.55 Gb (contig N50 191 kb) in length and encodes 17,821 proteins. The heterozygosity of the assembled genome was estimated to be 0.47%. Effective population size analysis suggested that an initial large population size of this species was maintained until 200 thousand years ago. The contraction of cuticle protein and opsin genes compared with Litopenaeus vannamei is assumed to be correlated with shell hardness and light perception ability, respectively. Furthermore, the analysis of three chemoreceptor gene families, the odorant receptor (OR), gustatory receptor (GR) and ionotropic receptor (IR) families, suggested that the mud crab has no OR genes and shows a contraction of GR genes and expansion of IR genes. The numbers of the three gene families were similar to those in three other decapods but different from those in two nondecapods and insects. In addition, IRs were more diversified in decapods than in nondecapod crustaceans, and most of the expanded IRs in the mud crab genome were clustered with the antennal IR clades. These findings suggested that IRs might exhibit more diverse functions in decapods than in nondecapods, which may compensate for the smaller number of GR genes. Decoding the S. paramamosain genome not only provides insight into the genetic changes underpinning ecological traits but also provides valuable information for improving the breeding and aquaculture of this species.

[1]  Qun Wang,et al.  Recent progress in the research of exosomes and Dscam regulated crab antiviral immunity. , 2020, Developmental and comparative immunology.

[2]  Zuhong Lu,et al.  Whole‐genome resequencing reveals the pleistocene temporal dynamics of Branchiostoma belcheri and Branchiostoma floridae populations , 2020, Ecology and evolution.

[3]  Fei Zhu,et al.  Differential expression of microRNAs in mud crab Scylla paramamosain in response to white spot syndrome virus (WSSV) infection. , 2020, Fish & shellfish immunology.

[4]  C. Derby,et al.  Comparison of transcriptomes from two chemosensory organs in four decapod crustaceans reveals hundreds of candidate chemoreceptor proteins , 2020, PloS one.

[5]  Jeong-Hyeon Choi,et al.  First draft genome for the sand-hopper Trinorchestia longiramus , 2020, Scientific Data.

[6]  G. Qiu,et al.  High-Quality Genome Assembly of Eriocheir japonica sinensis Reveals Its Unique Genome Evolution , 2020, Frontiers in Genetics.

[7]  Weiqi Wang,et al.  Chromosome-level genome assembly reveals the unique genome evolution of the swimming crab (Portunus trituberculatus) , 2020, GigaScience.

[8]  Chun-yan Ma,et al.  Characterization and expression analysis of seven putative JHBPs in the mud crab Scylla paramamosain: Putative relationship with methyl farnesoate. , 2019, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[9]  Zhang Zhang,et al.  Database Resources of the National Genomics Data Center in 2020 , 2019, Nucleic Acids Res..

[10]  N. Zhang,et al.  Chromosome-level genome assembly of golden pompano (Trachinotus ovatus) in the family Carangidae , 2019, Scientific Data.

[11]  Dandan Song,et al.  FLAS: fast and high-throughput algorithm for PacBio long-read self-correction , 2019, Bioinform..

[12]  Haifu Wan,et al.  The Single-molecule long-read sequencing of Scylla paramamosain , 2019, Scientific Reports.

[13]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v4: recent updates and new developments , 2019, Nucleic Acids Res..

[14]  Wei Chen,et al.  Genome survey, high-resolution genetic linkage map construction, growth-related quantitative trait locus (QTL) identification and gene location in Scylla paramamosain , 2019, Scientific Reports.

[15]  T. Ventura,et al.  The crustacean ecdysone cassette: A gatekeeper for molt and metamorphosis , 2019, The Journal of Steroid Biochemistry and Molecular Biology.

[16]  B. Moumen,et al.  The Genome of Armadillidium vulgare (Crustacea, Isopoda) Provides Insights into Sex Chromosome Evolution in the Context of Cytoplasmic Sex Determination. , 2019, Molecular biology and evolution.

[17]  Jue Ruan,et al.  Penaeid shrimp genome provides insights into benthic adaptation and frequent molting , 2019, Nature Communications.

[18]  H. Robertson Molecular Evolution of the Major Arthropod Chemoreceptor Gene Families. , 2019, Annual review of entomology.

[19]  Yan Zhang,et al.  LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly , 2018, GigaScience.

[20]  Bent Petersen,et al.  The Whole Genome Sequence and mRNA Transcriptome of the Tropical Cyclopoid Copepod Apocyclops royi , 2018, G3: Genes, Genomes, Genetics.

[21]  Tao Zhang,et al.  Database Resources of the BIG Data Center in 2019 , 2018, Nucleic acids research.

[22]  R. Casadio,et al.  Draft genomes and genomic divergence of two Lepidurus tadpole shrimp species (Crustacea, Branchiopoda, Notostraca) , 2018, Molecular ecology resources.

[23]  C. Derby,et al.  Chemoreceptor proteins in the Caribbean spiny lobster, Panulirus argus: Expression of Ionotropic Receptors, Gustatory Receptors, and TRP channels in two chemosensory organs and brain , 2018, PloS one.

[24]  Huan Wang,et al.  Identification and characterization of miRNAs in the gills of the mud crab (Scylla paramamosain) in response to a sudden drop in salinity , 2018, BMC Genomics.

[25]  Jue Ruan,et al.  LRScaf: improving draft genomes using long noisy reads , 2018, BMC Genomics.

[26]  H. Bracken-Grissom,et al.  Phylogenetic annotation and genomic architecture of opsin genes in Crustacea , 2018, Hydrobiologia.

[27]  R. Burton,et al.  Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus , 2018, Nature Ecology & Evolution.

[28]  Ziping Zhang,et al.  Identification and comparative analysis of the ovary and testis microRNAome of mud crab Scylla paramamosain , 2018, Molecular reproduction and development.

[29]  Yu-Yu Lin,et al.  The Toxicogenome of Hyalella azteca: A Model for Sediment Ecotoxicology and Evolutionary Toxicology. , 2018, Environmental science & technology.

[30]  Yuanyou Li,et al.  Mud Crab, Scylla paramamosain China's Leading Maricultured Crab , 2018 .

[31]  Yongliang Fan,et al.  The genomic and functional landscapes of developmental plasticity in the American cockroach , 2018, Nature Communications.

[32]  W. Stein,et al.  Clonal genome evolution and rapid invasive spread of the marbled crayfish , 2018, Nature Ecology & Evolution.

[33]  Brian R Johnson,et al.  The origin of the odorant receptor gene family in insects , 2018, bioRxiv.

[34]  Sudhir Kumar,et al.  TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. , 2017, Molecular biology and evolution.

[35]  James B. Munro,et al.  Evolutionary History of Chemosensory-Related Gene Families across the Arthropoda , 2017, Molecular biology and evolution.

[36]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[37]  Qian Zhang,et al.  GSA: Genome Sequence Archive* , 2017, Genom. Proteom. Bioinform..

[38]  Jin-Hyoung Kim,et al.  First Insights into the Subterranean Crustacean Bathynellacea Transcriptome: Transcriptionally Reduced Opsin Repertoire and Evidence of Conserved Homeostasis Regulatory Mechanisms , 2017, PloS one.

[39]  N. Nagarajan,et al.  Fast and accurate de novo genome assembly from long uncorrected reads , 2016, bioRxiv.

[40]  Andrew L. Lemire,et al.  The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion , 2016, bioRxiv.

[41]  Yuan Liu,et al.  Flow cytometric analysis of DNA content for four commercially important crabs in China , 2016, Acta Oceanologica Sinica.

[42]  James G. Baldwin-Brown,et al.  Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage , 2016, bioRxiv.

[43]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[44]  Chao Bian,et al.  Draft genome of the Chinese mitten crab, Eriocheir sinensis , 2016, GigaScience.

[45]  Philip A. Ewels,et al.  HiCUP: pipeline for mapping and processing Hi-C data , 2015, F1000Research.

[46]  Deanna M. Church,et al.  Assembly: a resource for assembled genomes at NCBI , 2015, Nucleic Acids Res..

[47]  L. Chin,et al.  HiCPlotter integrates genomic data with interaction matrices , 2015, Genome Biology.

[48]  Eric S. Lander,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2015, Cell.

[49]  Xiandong Meng,et al.  Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing , 2015, PloS one.

[50]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[51]  Yuan Liu,et al.  Comparative transcriptomic analysis provides insights into the molecular basis of the metamorphosis and nutrition metabolism change from zoeae to megalopae in Eriocheir sinensis. , 2015, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[52]  S. Yajima,et al.  Extraordinary diversity of visual opsin genes in dragonflies , 2015, Proceedings of the National Academy of Sciences.

[53]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[54]  B. Hansson,et al.  Expression of ionotropic receptors in terrestrial hermit crab's olfactory sensory neurons , 2015, Front. Cell. Neurosci..

[55]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[56]  Thomas K. F. Wong,et al.  Phylogenomics resolves the timing and pattern of insect evolution , 2014, Science.

[57]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[58]  Thomas Hackl,et al.  proovread: large-scale high-accuracy PacBio correction through iterative short read consensus , 2014, Bioinform..

[59]  J. Noguera,et al.  Genomic information in pig breeding: Science meets industry needs , 2014 .

[60]  Tetsuya Hayashi,et al.  Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads , 2014, Genome research.

[61]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[62]  B. Hansson,et al.  The hermit crab's nose—antennal transcriptomics , 2014, Front. Neurosci..

[63]  Andrew C. Adey,et al.  Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions , 2013, Nature Biotechnology.

[64]  D. Halligan,et al.  Estimation of the Spontaneous Mutation Rate per Nucleotide Site in a Drosophila melanogaster Full-Sib Family , 2013, Genetics.

[65]  W. Shi,et al.  The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote , 2013, Nucleic acids research.

[66]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[67]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[68]  James R. Knight,et al.  The genome sequence of Atlantic cod reveals a unique immune system , 2011, Nature.

[69]  R. Durbin,et al.  Inference of human population history from individual whole-genome sequences. , 2011, Nature.

[70]  Chuan-Yun Li,et al.  KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases , 2011, Nucleic Acids Res..

[71]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[72]  Todd H. Oakley,et al.  The Ecoresponsive Genome of Daphnia pulex , 2011, Science.

[73]  C. Cassa,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[74]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[75]  T. Gibson,et al.  Ancient Protostome Origin of Chemosensory Ionotropic Glutamate Receptors and the Evolution of Insect Taste and Olfaction , 2010, PLoS genetics.

[76]  Huanming Yang,et al.  De novo assembly of human genomes with massively parallel short read sequencing. , 2010, Genome research.

[77]  Sharon M. H. Gobes,et al.  Heterochrony in limb evolution: developmental mechanisms and natural selection. , 2009, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[78]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[79]  M. Lynch,et al.  The chemoreceptor genes of the waterflea Daphnia pulex: many Grs but no Ors , 2009, BMC Evolutionary Biology.

[80]  L. Vosshall,et al.  Variant Ionotropic Glutamate Receptors as Chemosensory Receptors in Drosophila , 2009, Cell.

[81]  Hans H. Cheng,et al.  Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds , 2008, Proceedings of the National Academy of Sciences.

[82]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[83]  O. Gotoh,et al.  A space-efficient and accurate method for mapping and aligning cDNA sequences onto genomic sequence , 2008, Nucleic acids research.

[84]  H. Amrein,et al.  Sugar Receptors in Drosophila , 2007, Current Biology.

[85]  Richard Benton,et al.  Sensitivity and specificity in Drosophila pheromone perception , 2007, Trends in Neurosciences.

[86]  Zhao Xu,et al.  LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..

[87]  D. Ussery,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[88]  Z. Qiao,et al.  Scylla paramamosain (Estampador) the most common mud crab (Genus Scylla) in China: evidence from mtDNA , 2006 .

[89]  C. Montell,et al.  A Taste Receptor Required for the Caffeine Response In Vivo , 2006, Current Biology.

[90]  L R Schaeffer,et al.  Strategy for applying genome-wide selection in dairy cattle. , 2006, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[91]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[92]  Jeffery P. Demuth,et al.  CAFE: a computational tool for the study of gene family evolution , 2006, Bioinform..

[93]  Paramvir S. Dehal,et al.  TreeFam: a curated database of phylogenetic trees of animal gene families , 2005, Nucleic Acids Res..

[94]  Thomas D. Wu,et al.  GMAP: a genomic mapping and alignment program for mRNA and EST sequence , 2005, Bioinform..

[95]  J. Carlson,et al.  Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[96]  H. Amrein,et al.  A Putative Drosophila Pheromone Receptor Expressed in Male-Specific Taste Neurons Is Required for Efficient Courtship , 2003, Neuron.

[97]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[98]  R. Varshney,et al.  Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) , 2003, Theoretical and Applied Genetics.

[99]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[100]  M. Goddard,et al.  Prediction of total genetic value using genome-wide dense marker maps. , 2001, Genetics.

[101]  Andrey Rzhetsky,et al.  A Chemosensory Gene Family Encoding Candidate Gustatory and Olfactory Receptors in Drosophila , 2001, Cell.

[102]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[103]  J. Carlson,et al.  Candidate taste receptors in Drosophila. , 2000, Science.

[104]  Mosè Manni,et al.  BUSCO: Assessing Genome Assembly and Annotation Completeness. , 2019, Methods in molecular biology.

[105]  Patricia P. Chan,et al.  tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. , 2019, Methods in molecular biology.

[106]  BIG Data Center,et al.  Database Resources of the BIG Data Center in 2019 , 2019, Nucleic Acids Res..

[107]  L. Vay Ecology and Management of Mud Crab Scylla spp. , 2001 .

[108]  W. S. Lakra,et al.  Somatic chromosomes of the black tiger prawn, Penaeus monodon (Penaeidae: Crustacea) , 1996 .

[109]  C. George Seminar on mud crab culture and trade , 1992 .

[110]  H. Sambrook Molecular cloning : a laboratory manual. Cold Spring Harbor, NY , 1989 .

[111]  W. Macnae A General Account of the Fauna and Flora of Mangrove Swamps and Forests in the Indo-West-Pacific Region , 1969 .