Optimal terrain-following for towed-aerial-cable sensors

Towed-aerial cable systems are often used for towing decoys from aircraft and for collecting electromagnetic data from low altitudes. Airborne cable systems are typically controlled by maneuvering the aircraft, which can limit the safe altitude of the towed-sensor package. In this paper, a real-time optimal control strategy for controlling a towed-cable system is proposed that uses cable winch control to control the altitude of the towed-body. The controller is based on a receding horizon control approach, where the aircraft senses the terrain profile ahead of the towed-body with a relatively short time horizon. This information is sent to the controller, which updates the cable winch reel acceleration to safely avoid colliding with the terrain, while keeping the towed-sensor close to the desired altitude for obtaining good measurements. The controller is developed for a simplified system model and implemented in a multibody cable system model that incorporates cable flexibility and elasticity.

[1]  Ronald L. Huston,et al.  Modeling of Variable Length Towed and Tethered Cable Systems , 1999 .

[2]  Pavel Trivailo,et al.  Motion Planning for an Aerial-Towed Cable System , 2005 .

[3]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[4]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .

[5]  I. Michael Ross,et al.  Legendre Pseudospectral Approximations of Optimal Control Problems , 2003 .

[6]  Pavel Trivailo,et al.  Optimal control of an aircraft-towed flexible cable system , 2005 .

[7]  R. Huston,et al.  Cable dynamics—a finite segment approach , 1976 .

[8]  Mario Innocenti,et al.  Dynamics and Control of Maneuverable Towed Flight Vehicles , 1992 .

[9]  I. J. Won,et al.  Identification of mineral deposits using airborne electromagnetic spectra , 2002 .

[10]  John R. Hauser,et al.  Applied receding horizon control of the Caltech Ducted Fan , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[11]  William B. Dunbar,et al.  MODEL PREDICTIVE CONTROL OF A THRUST-VECTORED FLIGHT CONTROL EXPERIMENT , 2002 .

[12]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[13]  Joseph Genin,et al.  The Dynamical Behaviour of a Flexible Cable in a Uniform Flow Field , 1971 .

[14]  Yasuhiro Fujimitsu,et al.  Development of an integrated airborne survey , 2004 .

[15]  Louis V. Schmidt,et al.  Dynamic modeling of a trailing wire towed by an orbiting aircraft , 1995 .

[16]  A. Bennett,et al.  Optimal guidance for airborne cable pickup system , 1984 .

[17]  J. Russell,et al.  EQUILIBRIUM AND STABILITY OF A CIRCULARLY TOWED CABLE SUBJECT TO AERODYNAMIC DRAG , 1976 .

[18]  S.G. Lemon,et al.  Towed-array history, 1917-2003 , 2004, IEEE Journal of Oceanic Engineering.

[19]  J. J . Russell,et al.  Equilibrium and Stability of a CircularlyTowed Cable Subject to Aerodynamic Drag , 1977 .

[20]  Richard M. Murray,et al.  Trajectory Generation for a Towed Cable System Using Differential Flatness , 1996 .

[21]  Johnny E. Quisenberry,et al.  Dynamic Simulation of Low Altitude Aerial Tow Systems , 2004 .

[22]  Thomas H. Bell,et al.  Electromagnetic induction spectroscopy for clearing landmines , 2001, IEEE Trans. Geosci. Remote. Sens..

[23]  Paul Williams,et al.  Optimal parameter estimation of dynamical systems using direct transcription methods , 2005 .

[24]  Bradley J. Buckham,et al.  Formulation And Validation of a Lumped Mass Model For Low-Tension ROV Tethers , 2001 .

[25]  A. Green,et al.  Airborne electromagnetics — Providing new perspectives on geomorphic process and landscape development in regolith-dominated terrains , 1999 .

[26]  Young-il Choo,et al.  A Survey of Analytical Methods for Dynamic Simulation of Cable-Body Systems. , 1973 .

[27]  P. Trivailo,et al.  Circularly-Towed Lumped Mass Cable Model Validation from Experimental Data , 2006 .

[28]  W. J. Kerins Analysis of towed decoys , 1993 .

[29]  G. J. Palacky,et al.  Use of airborne electromagnetic methods for resource mapping , 1993 .

[30]  Franz S. Hover,et al.  IDENTIFICATION OF LOW-ORDER DYNAMIC MODELS FOR DEEPLY-TOWED UNDERWATER VEHICLE SYSTEMS , 1991 .

[31]  Franz S. Hover,et al.  Inversion of a distributed system for open-loop trajectory following , 1994 .

[32]  Paul Williams,et al.  Application of Pseudospectral Methods for Receding Horizon Control , 2004 .

[33]  J F Henderson,et al.  The dynamics of an airborne towed target system with active control , 1999 .

[34]  Alexander S Bourmistrov,et al.  Nonlinear control law for aerial towed target , 1995 .

[35]  Pavel Trivailo,et al.  Optimal Motion Planning and Tracking Control for a... , 2005 .

[36]  Jeffrey W. Schram,et al.  A Three-Dimensional Dynamic Analysis of a Towed System , 1968 .

[37]  P. Trivailo,et al.  Optimal control of aerial tethers for payload rendezvous , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[38]  Paul Williams,et al.  On improving the accuracy of simple aerial towed-cable system models , 2007 .