High Order Fluctuation Schemes on Triangular Meshes

We develop a new class of schemes for the numerical solution of first-order steady conservation laws. The schemes are of the residual distribution, or fluctuation-splitting type. These schemes have mostly been developed in the context of triangular or tetrahedral elements whose degrees of freedom are their nodal values. We work here with more general elements that allow high-order accuracy. We introduce, for an arbitrary number of degrees of freedom, a simple mapping from a low-order monotone scheme to a monotone scheme that is as accurate as the degrees of freedom will allow. Proofs of consistency, convergence and accuracy are presented, and numerical examples from second, third and fourth-order schemes.