Microstructure and elastic properties of atomic layer deposited TiO2 anatase thin films

Abstract Amorphous TiO 2 thin films were deposited by means of atomic layer deposition on Kapton substrates and then crystallized ex situ by annealing at 300 °C to obtain the anatase phase. The morphology, structure and microstructure of films treated for 12, 24, 72 and 90 h were investigated. The local Ti coordination changes were studied by X-ray near-edge structure (XANES). On the basis of X-ray diffraction residual stress calculations, the elastic anisotropy of the films is experimentally determined for the first time ( A comp ∗ = 0.07 , A shear ∗ = 0.03 ). The film macro-strains increased with the time of treatment, while the micro-strains decreased. This effect may be correlated with the incipient anatase-to-rutile transformation as suggested by the changes observed in the XANES pattern of the film treated for 90 h. However, the contribution of the substrate cannot be excluded.

[1]  D. Chung,et al.  The Elastic Anisotropy of Crystals , 1967 .

[2]  M. Mohammadizadeh,et al.  First-principles elastic and thermal properties of TiO2: a phonon approach , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  L. Sangaletti,et al.  Niobium-titanium oxide powders obtained by laser-induced synthesis: Microstructure and structure evolution from diffraction data , 1998 .

[4]  M. Ding,et al.  Preparation and characteristics of polyimide-TiO2 nanocomposite film , 2000 .

[5]  O. Maciejak,et al.  Structural and mechanical properties of titanium oxide thin films for biomedical application , 2010 .

[6]  Yong Han,et al.  Mechanical properties of titania prepared by plasma electrolytic oxidation at different voltages , 2007 .

[7]  H. Ozkan Correlations of the temperature and pressure dependencies of the elastic constants of zircon , 2008 .

[8]  J. Banfield,et al.  Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 , 1997 .

[9]  S. Senz,et al.  Epitaxial growth of TiO2 thin films on SrTiO3, LaAlO3 and yttria-stabilized zirconia substrates by electron beam evaporation , 2007 .

[10]  M. Ferroni,et al.  Tailoring the pore size and architecture of CeO2/TiO2 core/shell inverse opals by atomic layer deposition. , 2009, Small.

[11]  V. Hauk,et al.  Structural and residual stress analysis by nondestructive methods : evaluation, application, assessment , 1997 .

[12]  P. Villain,et al.  Stress and elastic-constant analysis by X-ray diffraction in thin films , 2003 .

[13]  G. Steinle-Neumann,et al.  Ab-initio simulation of elastic constants for some ceramic materials , 2007 .

[14]  J. A. Pask,et al.  Kinetics of the Anatase‐Rutile Transformation , 1965 .

[15]  Han-Bo-Ram Lee,et al.  Applications of atomic layer deposition to nanofabrication and emerging nanodevices , 2009 .

[16]  J. Bokhoven,et al.  Influence of the muffin-tin approximation on the simulation of titanium K-edge X-ray absorption spectra of TiO2 (rutile and anatase phases) , 2010 .

[17]  T. Sajavaara,et al.  Atomic layer deposition and characterization of biocompatible hydroxyapatite thin films , 2009 .

[18]  Zhaoming Zhang,et al.  Amorphous to anatase transformation in atomic layer deposited titania thin films induced by hydrothermal treatment at 120 °C , 2008 .

[19]  Y. Gaillard,et al.  Nanoindentation of TiO2 thin films with different microstructures , 2009 .

[20]  Giorgio Sberveglieri,et al.  Novel selective ethanol sensors: W/TiO2 thin films by sol–gel spin-coating , 2003 .

[21]  L. Sangaletti,et al.  Morphology and microstructural properties of TiO_2 nanopowders doped with trivalent Al and Ga cations , 2000 .

[22]  G. K. Williamson,et al.  X-ray line broadening from filed aluminium and wolfram , 1953 .

[23]  Y. Hoshi,et al.  High-rate deposition of photocatalytic TiO2 films by oxygen plasma assist reactive evaporation method , 2008 .

[24]  E. Bourhis,et al.  In situ diffraction strain analysis of elastically deformed polycrystalline thin films, and micromechanical interpretation , 2009 .

[25]  Arnold C. Vermeulen,et al.  Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction , 2005 .

[26]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[27]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[28]  S. Whang,et al.  Elastic constants of single crystal γ – TiAl , 1995 .

[29]  Robert Bruce Lindsay,et al.  Physical Properties of Crystals , 1957 .

[30]  C. W. Mays,et al.  On surface stress and surface tension: II. Determination of the surface stress of gold , 1968 .

[31]  H. Craighead,et al.  Young's modulus and density measurements of thin atomic layer deposited films using resonant nanomechanics , 2010 .

[32]  D. P. Kirby,et al.  Anisotropic properties of high‐temperature polyimide thin films: Dielectric and thermal‐expansion behaviors , 1992 .

[33]  O Lyon,et al.  Soleil a New Powerful Tool for Materials Science , 2005 .

[34]  Jianjun Jiang,et al.  Pressure‐induced phase transition and elastic properties of TiO2 polymorphs , 2009 .

[35]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[36]  J. Cohen,et al.  Residual Stress: Measurement by Diffraction and Interpretation , 1987 .

[37]  Jianzhong Jiang,et al.  High-pressure polymorphs of anatase TiO 2 , 2000 .

[38]  L. Sangaletti,et al.  Correlation between crystallite sizes and microstrains in TiO2 nanopowders , 1999 .