Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci

BackgroundThe whitefly Bemisia tabaci is an important agricultural pest with global distribution. This phloem-sap feeder harbors a primary symbiont, “Candidatus Portiera aleyrodidarum”, which compensates for the deficient nutritional composition of its food sources, and a variety of secondary symbionts. Interestingly, all of these secondary symbionts are found in co-localization with the primary symbiont within the same bacteriocytes, which should favor the evolution of strong interactions between symbionts.ResultsIn this paper, we analyzed the genome sequences of the primary symbiont Portiera and of the secondary symbiont Hamiltonella in the B. tabaci Mediterranean (MED) species in order to gain insight into the metabolic role of each symbiont in the biology of their host. The genome sequences of the uncultured symbionts Portiera and Hamiltonella were obtained from one single bacteriocyte of MED B. tabaci. As already reported, the genome of Portiera is highly reduced (357 kb), but has kept a number of genes encoding most essential amino-acids and carotenoids. On the other hand, Portiera lacks almost all the genes involved in the synthesis of vitamins and cofactors. Moreover, some pathways are incomplete, notably those involved in the synthesis of some essential amino-acids. Interestingly, the genome of Hamiltonella revealed that this secondary symbiont can not only provide vitamins and cofactors, but also complete the missing steps of some of the pathways of Portiera. In addition, some critical amino-acid biosynthetic genes are missing in the two symbiotic genomes, but analysis of whitefly transcriptome suggests that the missing steps may be performed by the whitefly itself or its microbiota.ConclusionsThese data suggest that Portiera and Hamiltonella are not only complementary but could also be mutually dependent to provide a full complement of nutrients to their host. Altogether, these results illustrate how functional redundancies can lead to gene losses in the genomes of the different symbiotic partners, reinforcing their inter-dependency.

[1]  A. Moya,et al.  Complete Genome Sequence of “Candidatus Portiera aleyrodidarum” BT-QVLC, an Obligate Symbiont That Supplies Amino Acids and Carotenoids to Bemisia tabaci , 2012, Journal of bacteriology.

[2]  N. Moran,et al.  Genomics and evolution of heritable bacterial symbionts. , 2008, Annual review of genetics.

[3]  M. Ghanim,et al.  Horizontal transmission of begomoviruses between Bemisia tabaci biotypes , 2007, Arthropod-Plant Interactions.

[4]  Jürgen Gadau,et al.  The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Cloning and sequencing of a gene encoding a glutamate and aspartate carrier of Escherichia coli K-12 , 1990, Journal of bacteriology.

[6]  A. Moya,et al.  Evolutionary Convergence and Nitrogen Metabolism in Blattabacterium strain Bge, Primary Endosymbiont of the Cockroach Blattella germanica , 2009, PLoS genetics.

[7]  P. J. Barro,et al.  Use of RAPD PCR to Distinguish the B Biotype from Other Biotypes of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) , 1997 .

[8]  Daniel B. Sloan,et al.  Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. , 2014, Molecular biology and evolution.

[9]  Manuel Porcar,et al.  Mealybugs nested endosymbiosis: going into the ‘matryoshka’ system in Planococcus citri in depth , 2013, BMC Microbiology.

[10]  Hajime Ishikawa,et al.  The 160-Kilobase Genome of the Bacterial Endosymbiont Carsonella , 2006, Science.

[11]  Xiaoli Bing,et al.  Diversity of secondary endosymbionts among different putative species of the whitefly Bemisia tabaci , 2013, Insect science.

[12]  Joshua P. White,et al.  Independent origins and horizontal transfer of bacterial symbionts of aphids , 2001, Molecular ecology.

[13]  Xiaoli Bing,et al.  Draft Genome Sequence of “Candidatus Hamiltonella defensa,” an Endosymbiont of the Whitefly Bemisia tabaci , 2012, Journal of bacteriology.

[14]  D. Gerling,et al.  Identification and Localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae) , 2006, Applied and Environmental Microbiology.

[15]  M. Ghanim,et al.  Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex , 2010, Molecular ecology.

[16]  Daniel B. Sloan,et al.  The Evolution of Genomic Instability in the Obligate Endosymbionts of Whiteflies , 2013, Genome biology and evolution.

[17]  S. Colella,et al.  Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola , 2010, Insect molecular biology.

[18]  J. Brown,et al.  Diversity of Prokaryotes Associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) , 2002 .

[19]  Xiaoli Bing,et al.  Characterization of a Newly Discovered Symbiont of the Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) , 2012, Applied and Environmental Microbiology.

[20]  Kipp W. Johnson,et al.  Genome Sequences of the Primary Endosymbiont “Candidatus Portiera aleyrodidarum” in the Whitefly Bemisia tabaci B and Q Biotypes , 2012, Journal of bacteriology.

[21]  P. D. De Barro,et al.  An Extensive Field Survey Combined with a Phylogenetic Analysis Reveals Rapid and Widespread Invasion of Two Alien Whiteflies in China , 2011, PloS one.

[22]  A. Douglas,et al.  Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. , 1998, Annual review of entomology.

[23]  D. Gerling,et al.  Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci , 2008, BMC Genomics.

[24]  Ling V. Sun,et al.  Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements , 2004, PLoS biology.

[25]  M. Feldman,et al.  Large-scale reconstruction and phylogenetic analysis of metabolic environments , 2008, Proceedings of the National Academy of Sciences.

[26]  J. McCutcheon,et al.  Horizontal Gene Transfer from Diverse Bacteria to an Insect Genome Enables a Tripartite Nested Mealybug Symbiosis , 2013, Cell.

[27]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[28]  J. Gowrishankar,et al.  Evidence for an Arginine Exporter Encoded by yggA (argO) That Is Regulated by the LysR-Type Transcriptional Regulator ArgP in Escherichia coli , 2004, Journal of bacteriology.

[29]  M. Ghanim,et al.  Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  Jean-Michel Claverie,et al.  Genome Sequence of Rickettsia bellii Illuminates the Role of Amoebae in Gene Exchanges between Intracellular Pathogens , 2006, PLoS genetics.

[31]  P. Baumann,et al.  Evolutionary Relationships of Primary Prokaryotic Endosymbionts of Whiteflies and Their Hosts , 2004, Applied and Environmental Microbiology.

[32]  Y. Buckley,et al.  Refined Global Analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) Mitochondrial Cytochrome Oxidase 1 to Identify Species Level Genetic Boundaries , 2010 .

[33]  Daniel B. Sloan,et al.  Endosymbiotic bacteria as a source of carotenoids in whiteflies , 2012, Biology Letters.

[34]  S. Colella,et al.  A Genomic Reappraisal of Symbiotic Function in the Aphid/Buchnera Symbiosis: Reduced Transporter Sets and Variable Membrane Organisations , 2011, PloS one.

[35]  G. Devine,et al.  Characterisation of Neonicotinoid and Pymetrozine Resistance in Strains of Bemisia tabaci(Hemiptera:Aleyrodidae)from China , 2012 .

[36]  Peter Schattner,et al.  The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs , 2005, Nucleic Acids Res..

[37]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[38]  Peter D. Newell,et al.  Shared Metabolic Pathways in a Coevolved Insect-Bacterial Symbiosis , 2013, Applied and Environmental Microbiology.

[39]  Chuan-Xi Zhang,et al.  De novo characterization of a whitefly transcriptome and analysis of its gene expression during development , 2010, BMC Genomics.

[40]  Francisco J. Silva,et al.  Differential annotation of tRNA genes with anticodon CAT in bacterial genomes , 2006, Nucleic acids research.

[41]  Ivica Tamas,et al.  Endosymbiont gene functions impaired and rescued by polymerase infidelity at poly(A) tracts , 2008, Proceedings of the National Academy of Sciences.

[42]  Michael P. Barrett,et al.  MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks , 2010, Nucleic Acids Res..

[43]  F. Vavre,et al.  Interactions between vertically transmitted symbionts: cooperation or conflict? , 2009, Trends in microbiology.

[44]  Masahira Hattori,et al.  Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. , 2005, Genome research.

[45]  A. Moya,et al.  Learning how to live together: genomic insights into prokaryote–animal symbioses , 2008, Nature Reviews Genetics.

[46]  Akiyasu C. Yoshizawa,et al.  KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Environmental health perspectives.

[47]  M. Ghanim,et al.  Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. , 2009, Pest management science.

[48]  L. Boykin,et al.  Bemisia tabaci: a statement of species status. , 2011, Annual review of entomology.

[49]  Kostas Bourtzis,et al.  Manipulative tenants : bacteria associated with arthropods , 2011 .

[50]  N. Moran,et al.  Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors , 2009, Proceedings of the National Academy of Sciences.

[51]  N. Moran,et al.  Lateral Transfer of Genes from Fungi Underlies Carotenoid Production in Aphids , 2010, Science.

[52]  V. Martin,et al.  Genetic Investigation of the Catabolic Pathway for Degradation of Abietane Diterpenoids by Pseudomonas abietaniphilaBKME-9 , 2000, Journal of bacteriology.

[53]  Daniel B. Sloan,et al.  Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. , 2012, Molecular biology and evolution.

[54]  Emmanuelle Lerat,et al.  Recognizing the pseudogenes in bacterial genomes , 2005, Nucleic acids research.

[55]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[56]  A. Moya,et al.  Serratia symbiotica from the Aphid Cinara cedri: A Missing Link from Facultative to Obligate Insect Endosymbiont , 2011, PLoS genetics.

[57]  N. Moran,et al.  Origin of an Alternative Genetic Code in the Extremely Small and GC–Rich Genome of a Bacterial Symbiont , 2009, PLoS genetics.

[58]  A. Wilson,et al.  Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts , 2013, Proceedings of the National Academy of Sciences.

[59]  Thomas Dandekar,et al.  Metabolic Interdependence of Obligate Intracellular Bacteria and Their Insect Hosts , 2004, Microbiology and Molecular Biology Reviews.

[60]  J. Werren,et al.  Characteristics of the genome of Arsenophonus nasoniae, son‐killer bacterium of the wasp Nasonia , 2010, Insect molecular biology.

[61]  G. Devine,et al.  Distribution and dynamics of Bemisia tabaci invasive biotypes in central China , 2010, Bulletin of Entomological Research.

[62]  N. Moran,et al.  Small, Smaller, Smallest: The Origins and Evolution of Ancient Dual Symbioses in a Phloem-Feeding Insect , 2013, Genome biology and evolution.

[63]  Leen Stougie,et al.  Graph-Based Analysis of the Metabolic Exchanges between Two Co-Resident Intracellular Symbionts, Baumannia cicadellinicola and Sulcia muelleri, with Their Insect Host, Homalodisca coagulata , 2010, PLoS Comput. Biol..

[64]  S. Génieys,et al.  Do vertically transmitted symbionts co‐existing in a single host compete or cooperate? A modelling approach , 2008, Journal of evolutionary biology.

[65]  N. Moran,et al.  Functional Convergence in Reduced Genomes of Bacterial Symbionts Spanning 200 My of Evolution , 2010, Genome biology and evolution.

[66]  M. Hattori,et al.  Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS , 2000, Nature.

[67]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[68]  A. Douglas Phloem-sap feeding by animals: problems and solutions. , 2006, Journal of experimental botany.

[69]  M. Ghanim,et al.  Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype , 2011 .

[70]  P. Kittayapong,et al.  Closely Related Wolbachia Strains within the Pumpkin Arthropod Community and the Potential for Horizontal Transmission via the Plant , 2006, Microbial Ecology.

[71]  M. Inbar,et al.  Almost There: Transmission Routes of Bacterial Symbionts between Trophic Levels , 2009, PloS one.

[72]  F. Vavre,et al.  Bacterial symbionts in insects or the story of communities affecting communities , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[73]  E. Bongcam-Rudloff,et al.  Complete genome sequence of a plant associated bacterium Bacillus amyloliquefaciens subsp. plantarum UCMB5033 , 2014, Standards in genomic sciences.

[74]  N. Moran,et al.  The nutrient supplying capabilities of Uzinura, an endosymbiont of armoured scale insects. , 2013, Environmental microbiology.

[75]  P. Baumann Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. , 2005, Annual review of microbiology.

[76]  N. Moran,et al.  Evolutionary Relationships of Three New Species of Enterobacteriaceae Living as Symbionts of Aphids and Other Insects , 2005, Applied and Environmental Microbiology.

[77]  Ian T. Paulsen,et al.  Comparative Analyses of Fundamental Differences in Membrane Transport Capabilities in Prokaryotes and Eukaryotes , 2005, PLoS Comput. Biol..

[78]  N. Moran,et al.  Convergent evolution of metabolic roles in bacterial co-symbionts of insects , 2009, Proceedings of the National Academy of Sciences.

[79]  J. McCutcheon,et al.  An Interdependent Metabolic Patchwork in the Nested Symbiosis of Mealybugs , 2011, Current Biology.

[80]  Peter D. Karp,et al.  The Pathway Tools software , 2002, ISMB.

[81]  Phat L Tran,et al.  Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters , 2006, PLoS biology.

[82]  N. Moran,et al.  Parallel genomic evolution and metabolic interdependence in an ancient symbiosis , 2007, Proceedings of the National Academy of Sciences.

[83]  H. Doddapaneni,et al.  The Complete Genome Sequence of ‘Candidatus Liberibacter solanacearum’, the Bacterium Associated with Potato Zebra Chip Disease , 2011, PloS one.

[84]  P. Degnan,et al.  Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. , 2005, Genome research.

[85]  N. Moran,et al.  The impact of microbial symbionts on host plant utilization by herbivorous insects , 2014, Molecular ecology.

[86]  Shaoli Wang,et al.  The Endosymbiont Hamiltonella Increases the Growth Rate of Its Host Bemisia tabaci during Periods of Nutritional Stress , 2014, PloS one.

[87]  Andrés Moya,et al.  A Small Microbial Genome: The End of a Long Symbiotic Relationship? , 2006, Science.

[88]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[89]  Wendy S. Schackwitz,et al.  One Bacterial Cell, One Complete Genome , 2010, PloS one.

[90]  Moriya Ohkuma,et al.  Defensive Bacteriome Symbiont with a Drastically Reduced Genome , 2013, Current Biology.