Improving accuracy using subpixel smoothing for multiband effective-mass Hamiltonians of semiconductor nanostructures

Abstract We develop schemes of subpixel smoothing for the multiband Luttinger–Kohn and Burt–Foreman Hamiltonians of semiconductor nanostructures. With proper procedures of parameter averages at abrupt interfaces, computational errors of envelope functions due to the discontinuity of heterostructures are significantly reduced. Two smoothing approaches are presented. One is based on eliminations of the first-order perturbation in energy, and the other is an application of the Hellmann–Feynman theorem. Using the finite-difference method, we find that while the procedure of perturbation theory seems to be more robust than that of Hellmann–Feynman theorem, the errors of both schemes are (considerably) lower than that without smoothing or with direct but unjustified averages of untransformed parameters. The proposed approaches may enhance numerical accuracies and reduce computational cost for the modeling of nanostructures.

[1]  T. C. Mcgill,et al.  Numerical spurious solutions in the effective mass approximation , 2003 .

[2]  Shu-Wei Chang,et al.  Bound-to-continuum absorption with tunneling in type-II nanostructures: a multiband source-radiation approach. , 2013, Optics express.

[3]  Steven G. Johnson,et al.  Perturbation theory for anisotropic dielectric interfaces, and application to subpixel smoothing of discretized numerical methods. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Steven G. Johnson,et al.  Perturbation theory for Maxwell's equations with shifting material boundaries. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  L. J. Sham,et al.  Electronic Properties of Flat-Band Semiconductor Heterostructures , 1981 .

[6]  Bernd Witzigmann,et al.  Ellipticity and the spurious solution problem of k ∙ p envelope equations , 2007 .

[7]  P. Vogl,et al.  Real-space multiband envelope-function approach without spurious solutions , 2011 .

[8]  G. Dresselhaus,et al.  Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals , 1955 .

[9]  L. Voon,et al.  The k p Method: Electronic Properties of Semiconductors , 2009 .

[10]  Shun Lien Chuang,et al.  Modeling of strained quantum-well lasers with spin-orbit coupling , 1995 .

[11]  McGill,et al.  Efficient, numerically stable multiband k , 1996, Physical review. B, Condensed matter.

[12]  Sercel,et al.  Analytical formalism for determining quantum-wire and quantum-dot band structure in the multiband envelope-function approximation. , 1990, Physical review. B, Condensed matter.

[13]  Chuang,et al.  Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. , 1992, Physical review. B, Condensed matter.

[14]  Chuang,et al.  Resonant tunneling of holes in the multiband effective-mass approximation. , 1991, Physical review. B, Condensed matter.

[15]  G. E. Pikus,et al.  Symmetry and strain-induced effects in semiconductors , 1974 .

[16]  B. A. Foreman,et al.  Elimination of spurious solutions from eight-band k.p theory , 1997 .

[17]  Shun Lien Chuang,et al.  Physics of Photonic Devices , 2009 .

[18]  B. A. Foreman,et al.  Effective-mass Hamiltonian and boundary conditions for the valence bands of semiconductor microstructures. , 1993, Physical review. B, Condensed matter.

[19]  Shun Lien Chuang,et al.  A band-structure model of strained quantum-well wurtzite semiconductors , 1997 .

[20]  Steven G. Johnson,et al.  Improving accuracy by subpixel smoothing in the finite-difference time domain. , 2006, Optics letters.

[21]  Chuang Theory of hole refractions from heterojunctions. , 1989, Physical review. B, Condensed matter.

[22]  W. Kohn,et al.  Motion of Electrons and Holes in Perturbed Periodic Fields , 1955 .

[23]  Morten Willatzen,et al.  Exact envelope-function theory versus symmetrized Hamiltonian for quantum wires: a comparison , 2004 .

[24]  Steven G. Johnson,et al.  Meep: A flexible free-software package for electromagnetic simulations by the FDTD method , 2010, Comput. Phys. Commun..

[25]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[26]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[27]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[28]  M G Burt,et al.  The justification for applying the effective-mass approximation to microstructures , 1992 .

[29]  P. Lawaetz,et al.  Valence-Band Parameters in Cubic Semiconductors , 1971 .

[30]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[31]  Cun-Zheng Ning,et al.  k.p Hamiltonian without spurious-state solutions , 2003 .

[32]  Steven G. Johnson,et al.  Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing. , 2009, Optics letters.

[33]  Matthias Ehrhardt,et al.  Multi-Band Effective Mass Approximations , 2014 .