Polynomial chaos expansions and stochastic finite element methods
暂无分享,去创建一个
[1] Seymour Geisser,et al. The Predictive Sample Reuse Method with Applications , 1975 .
[2] Ilya M. Sobol,et al. Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .
[3] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[4] Bak Kong Low,et al. Reliability analysis of circular tunnel under hydrostatic stress field , 2010 .
[5] M. Berveiller. PRESENTATION OF TWO METHODS FOR COMPUTING THE RESPONSE COEFFICIENTS IN STOCHASTIC FINITE ELEMENT ANALYSIS M. Berveiller, and B. Sudret Electricité de France, R&D Division, Site des Renardières F-77818 Moret sur Loing , 2004 .
[6] William H. Press,et al. Numerical recipes , 1990 .
[7] K. Phoon,et al. Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme , 2002 .
[8] Hermann G. Matthies,et al. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .
[9] S. Isukapalli. UNCERTAINTY ANALYSIS OF TRANSPORT-TRANSFORMATION MODELS , 1999 .
[10] G. Blatman,et al. Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis , 2009 .
[11] S. L. Lee,et al. Reliability Analysis of Pile Settlement , 1990 .
[12] K. Phoon,et al. Simulation of strongly non-Gaussian processes using Karhunen–Loeve expansion , 2005 .
[13] Gregory B. Baecher,et al. Estimating Autocovariance of In‐Situ Soil Properties , 1993 .
[14] Kok-Kwang Phoon,et al. Simulation of second-order processes using Karhunen–Loeve expansion , 2002 .
[15] Henrik O. Madsen,et al. Structural Reliability Methods , 1996 .
[16] Bruno Sudret,et al. Meta-models for structural reliability and uncertainty quantification , 2012, 1203.2062.
[17] G. Fenton. Random Field Modeling of CPT Data , 2000 .
[18] M. D. McKay,et al. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .
[19] Bruno Sudret,et al. Sparse polynomial chaos expansions of vector-valued response quantities , 2014 .
[20] I. Sobol. Global Sensitivity Indices for Nonlinear Mathematical Models , 2004 .
[21] Hans-Jürgen Lang,et al. Bodenmechanik und Grundbau , 1982 .
[22] Erik H. Vanmarcke,et al. Random Fields: Analysis and Synthesis. , 1985 .
[23] Comparison of methods for computing the response coefficients in stochastic finite element analysis , 2003 .
[24] Yoshua Bengio,et al. Model Selection for Small Sample Regression , 2002, Machine Learning.
[25] Nut Mao,et al. Probabilistic analysis and design of strip foundations resting on rocks obeying Hoek-Brown failure criterion , 2012 .
[26] Tamara Al-Bittar,et al. Bearing capacity of strip footings on spatially random soils using sparse polynomial chaos expansion , 2011 .
[27] B. Sudret,et al. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .
[28] George Deodatis,et al. Effects of random heterogeneity of soil properties on bearing capacity , 2005 .
[29] H. Najm,et al. A stochastic projection method for fluid flow II.: random process , 2002 .
[30] K. Phoon,et al. Comparison between Karhunen-Loève expansion and translation-based simulation of non-Gaussian processes , 2007 .
[31] R. Nelsen. An Introduction to Copulas , 1998 .
[32] Joseph A. C. Delaney. Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.
[33] Gordon A. Fenton,et al. Estimation for Stochastic Soil Models , 1999 .
[34] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .
[35] Roger G. Ghanem,et al. Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..
[36] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[37] Etienne de Rocquigny,et al. Modelling Under Risk and Uncertainty: An Introduction to Statistical, Phenomenological and Computational Methods , 2012 .
[38] Bruno Sudret,et al. Principal component analysis and Least Angle Regression in spectral stochastic finite element analysis , 2011 .
[39] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[40] W. Tang,et al. Efficient Spreadsheet Algorithm for First-Order Reliability Method , 2007 .
[41] R. Tibshirani,et al. Forward stagewise regression and the monotone lasso , 2007, 0705.0269.
[42] E. Vanmarcke. Probabilistic Modeling of Soil Profiles , 1977 .
[43] Bruno Sudret,et al. Stochastic finite element methods in geotechnical engineering , 2008 .
[44] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[45] Matthew P. Wand,et al. Kernel Smoothing , 1995 .
[46] Dirk P. Kroese,et al. Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.
[47] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..
[48] I. Sobol,et al. Global sensitivity indices for nonlinear mathematical models. Review , 2005 .
[49] Bak Kong Low,et al. Reliability-based design applied to retaining walls , 2005 .
[50] M. Lemaire,et al. Stochastic finite element: a non intrusive approach by regression , 2006 .
[51] Stefano Marelli,et al. UQLab: a framework for uncertainty quantification in MATLAB , 2014 .
[52] Bruno Sudret,et al. Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach , 2008 .
[53] Saltelli Andrea,et al. Global Sensitivity Analysis: The Primer , 2008 .
[54] Bruno Sudret,et al. A stochastic finite element procedure for moment and reliability analysis , 2006 .