Calix[n]metallocenyl[m]phyrins (n = 1, 2 and m = 2, 4): aryl vs. alkyl.

The syntheses, spectral and structural characterization of metallocenes incorporated normal and expanded calixphyrins are reported.

[1]  B. Suijkerbuijk,et al.  Merging porphyrins with organometallics: synthesis and applications. , 2008, Angewandte Chemie.

[2]  M. Stępień,et al.  Helical Porphyrinoids: Incorporation of Ferrocene Subunits into Macrocyclic Structures , 2008 .

[3]  S. Sakaki,et al.  Syntheses, structures, and coordination chemistry of phosphole-containing hybrid calixphyrins: promising macrocyclic P,N2,X-mixed donor ligands for designing reactive transition-metal complexes. , 2008, Journal of the American Chemical Society.

[4]  H. Maeda Supramolecular Chemistry of Acyclic Oligopyrroles , 2007 .

[5]  A. Srinivasan,et al.  ansa-Metallocene-based cyclic[2]pyrroles. , 2007, Organic Letters.

[6]  A. Messina,et al.  Syntheses, structures, and anion-binding properties of two novel calix[2]benzo[4]pyrroles. , 2007, Chemistry.

[7]  Philip A. Gale,et al.  Anion coordination and anion-templated assembly: Highlights from 2002 to 2004 , 2006 .

[8]  F. Thomas,et al.  Calix[4]phyrin based redox architectures: towards new molecular tools for electrochemical sensing. , 2005, Dalton transactions.

[9]  C. H. Devillers,et al.  Anion recognition and redox sensing by a metalloporphyrin–ferrocene–alkylammonium conjugate , 2004 .

[10]  V. Lynch,et al.  Calix[4]pyrrole[2]carbazole: a new kind of expanded calixpyrrole. , 2004, Journal of the American Chemical Society.

[11]  P. Bouř,et al.  Calix[4]phyrins. Effect of peripheral substituents on conformational mobility and structure within a series of related systems. , 2004, Journal of the American Chemical Society.

[12]  Jonathan S. Lindsey,et al.  Multibit Memory Using Self‐Assembly of Mixed Ferrocene/Porphyrin Monolayers on Silicon , 2004 .

[13]  V. Lynch,et al.  Calix[2]bipyrrole[2]furan and calix[2]bipyrrole[2]thiophene: new pyrrolic receptors exhibiting a preference for carboxylate anions. , 2003, Journal of the American Chemical Society.

[14]  Philip A. Gale,et al.  Pyrrolic and polypyrrolic anion binding agents , 2003 .

[15]  J. Sessler,et al.  Synthesis and dihydrogen phosphate binding properties of pyrrole containing ansa-ferrocenes , 2001 .

[16]  J. Sessler,et al.  Sapphyrins: versatile anion binding agents. , 2001, Accounts of chemical research.

[17]  Philip A. Gale,et al.  Ferrocene-substituted calix[4]pyrrole: a new electrochemical sensor for anions involving CH⋯anion hydrogen bonds , 2001 .

[18]  J. Sessler,et al.  Calixphyrins. Hybrid macrocycles at the structural crossroads between porphyrins and calixpyrroles , 2001 .

[19]  V. Lynch,et al.  Synthesis of novel expanded calixphyrins: anion binding properties of a calix[6]phyrin with a deep cavity. , 2001, Journal of the American Chemical Society.

[20]  Jang,et al.  Convenient route to super-expanded calixpyrroles: synthesis of Calix , 2000, Organic letters.

[21]  V. Lynch,et al.  Calixphyrins: Novel Macrocycles at the Intersection between Porphyrins and Calixpyrroles , 2000 .

[22]  I. Yamazaki,et al.  Vectorial Multistep Electron Transfer at the Gold Electrodes Modified with Self-Assembled Monolayers of Ferrocene−Porphyrin−Fullerene Triads , 2000 .

[23]  M. Scherer A bridged pyrrolic ansa-ferrocene. A new type of anion receptor , 1998 .

[24]  Philip A. Gale,et al.  Calix[4]pyridine: a new arrival in the heterocalixarene family , 1998 .

[25]  K. Uosaki,et al.  Very Efficient Visible-Light-Induced Uphill Electron Transfer at a Self-Assembled Monolayer with a Porphyrin−Ferrocene−Thiol Linked Molecule , 1997 .