Fair Path Planning with a Single Cubic Spiral Segment

Spirals are curves of monotone curvature with constant sign and therefore such curves are free from singularities (loops, cusps), inflection points, and local curvature extrema. These properties make the study of spiral segments an interesting problem both in practical and aesthetic applications. An important issue in this paper is to design spiral transitions preserving G2 Hermite conditions. This paper aims to improve the existing methods of a C-shaped transition between two circles with a single cubic spiral segment.

[1]  Dereck S. Meek,et al.  Planar G2 curve design with spiral segments , 1998, Comput. Aided Des..

[2]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[3]  Zulfiqar Habib,et al.  Transition between concentric or tangent circles with a single segment of G2 PH quintic curve , 2008, Comput. Aided Geom. Des..

[4]  Muhammad Sarfraz Advances in geometric modeling , 2004 .

[5]  Zulfiqar Habib,et al.  G2 Pythagorean hodograph quintic transition between two circles with shape control , 2007, Comput. Aided Geom. Des..

[6]  D. S. Meekb,et al.  Planar interpolation with a pair of rational spirals , 2005 .

[7]  Bruce R. Piper,et al.  Interpolation with cubic spirals , 2004, Comput. Aided Geom. Des..

[8]  Ajay Joneja,et al.  Path Generation for High Speed Machining Using Spiral Curves , 2007 .

[9]  T. Suzuki,et al.  Planning Spiral Motions of Nonholonomic Free-Flying Space Robots , 1997 .

[10]  M. Sarfraz Geometric Modeling: Techniques, Applications, Systems and Tools , 2004, Springer Netherlands.

[11]  Zulfiqar Habib,et al.  G2 cubic transition between two circles with shape control , 2009 .

[12]  Jing-Sin Liu,et al.  Practical and flexible path planning for car-like mobile robot using maximal-curvature cubic spiral , 2005, Robotics Auton. Syst..

[13]  Zulfiqar Habib,et al.  Rational cubic spline interpolation with shape control , 2005, Comput. Graph..

[14]  Dereck S. Meek,et al.  G2 curve design with a pair of Pythagorean Hodograph quintic spiral segments , 2007, Comput. Aided Geom. Des..

[15]  Alonzo Kelly,et al.  Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control , 2003, Int. J. Robotics Res..

[16]  Said M. Easa,et al.  State of the Art of Highway Geometric Design Consistency , 1999 .

[17]  Zulfiqar Habib,et al.  On PH quintic spirals joining two circles with one circle inside the other , 2007, Comput. Aided Des..

[18]  D. Walton,et al.  A planar cubic Be´zier spiral , 1996 .

[19]  ズルフィカル ハビブ,et al.  An answer to an open problem on cubic spiral transition between two circles (Computer Albebra-Design of Algorithms, Implementations and Applications RIMS研究集会報告集) , 2006 .

[20]  Dereck S. Meek,et al.  Planar G 2 transition curves composed of cubic Bézier spiral segments , 2003 .

[21]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .